Visual categorization and learning of visual categories exhibit early onset, however the underlying mechanisms of early categorization are not well understood. The main limiting factor for examining these mechanisms is the limited duration of infant cooperation (10-15 minutes), which leaves little room for multiple test trials. With its tight link to visual attention, eye tracking is a promising method for getting access to the mechanisms of category learning. But how should researchers decide which aspects of the rich eye tracking data to focus on? To date, eye tracking variables are generally handpicked, which may lead to biases in the eye tracking data. Here, we propose an automated method for selecting eye tracking variables based on analyses of their usefulness to discriminate learners from non-learners of visual categories. We presented infants and adults with a category learning task and tracked their eye movements. We then extracted an over-complete set of eye tracking variables encompassing durations, probabilities, latencies, and the order of fixations and saccadic eye movements. We compared three statistical techniques for identifying those variables among this large set that are useful for discriminating learners form non-learners: ANOVA ranking, Bayes ranking, and L1 regularized logistic regression. We found remarkable agreement between these methods in identifying a small set of discriminant variables. Moreover, the same eye tracking variables allow us to classify category learners from non-learners among adults and 6- to 8-month-old infants with accuracies above 71%.
翻译:视觉类的视觉分类和学习是早期开始的,但是早期分类的基本机制没有很好地理解。审查这些机制的主要限制因素是婴儿合作(10-15分钟)的有限期限(10-15分钟),这为多次测试试验留下了很少的空间。由于眼睛跟踪与视觉关注的紧密联系,因此是接触类别学习机制的一个很有希望的方法。但是,研究人员应该如何决定丰富的眼睛跟踪数据的哪些方面需要关注?迄今为止,眼跟踪变量一般都是手工挑选的,这可能导致眼睛跟踪数据中的偏差。这里,我们提出一种基于分析眼跟踪变量的自动选择方法,根据这些变量对歧视非视觉类的学习者的作用进行分析。我们向婴儿和成人介绍了一个类别学习任务,并跟踪其眼睛运动。我们随后提取了一套超完全的眼跟踪变量,包括持续时间、概率、延缓性、迟缓性以及固定和连续性眼睛运动的顺序。我们比较了三种统计技术,用以识别这些大类学生中的这些变量,有助于形成非学习者:ANOVA排名、Bayes以上、L1级学生的学习任务,并跟踪他们的眼部位运动运动运动运动运动运动运动运动运动运动。我们发现了一系列8级的典型的固定的变数。我们发现这些不同的变数为相同的变数。我们发现了一个惊人的变数。在正常的变数的变数类别中的变数的变数。