The interpretation of data from indirect detection experiments searching for dark matter annihilations requires computationally expensive simulations of cosmic-ray propagation. In this work we present a new method based on Recurrent Neural Networks that significantly accelerates simulations of secondary and dark matter Galactic cosmic ray antiprotons while achieving excellent accuracy. This approach allows for an efficient profiling or marginalisation over the nuisance parameters of a cosmic ray propagation model in order to perform parameter scans for a wide range of dark matter models. We identify importance sampling as particularly suitable for ensuring that the network is only evaluated in well-trained parameter regions. We present resulting constraints using the most recent AMS-02 antiproton data on several models of Weakly Interacting Massive Particles. The fully trained networks are released as DarkRayNet together with this work and achieve a speed-up of the runtime by at least two orders of magnitude compared to conventional approaches.
翻译:对探索暗物质灭绝的间接探测实验数据的解释需要计算成本昂贵的宇宙射线传播模拟。在这项工作中,我们介绍了基于经常性神经网络的新方法,该方法大大加快了二次和黑暗物质模拟,同时实现了极精确的银河宇宙射线反质质质。这一方法可以对宇宙射线传播模型的扰动参数进行高效的剖析或边缘化,以便为一系列广泛的暗物质模型进行参数扫描。我们发现,重要取样特别适合确保网络仅在经过良好训练的参数区域进行评估。我们利用最近AMS-02号反质子数据,对若干微弱相互作用的大规模粒子模型提出了限制。经过充分培训的网络与这项工作一起发布为DarkRayNet,并比常规方法至少加快了两个数量级运行时间的运行速度。