Object pose estimation is an integral part of robot vision and AR. Previous 6D pose retrieval pipelines treat the problem either as a regression task or discretize the pose space to classify. We change this paradigm and reformulate the problem as an action decision process where an initial pose is updated in incremental discrete steps that sequentially move a virtual 3D rendering towards the correct solution. A neural network estimates likely moves from a single RGB image iteratively and determines so an acceptable final pose. In comparison to other approaches that train object-specific pose models, we learn a decision process. This allows for a lightweight architecture while it naturally generalizes to unseen objects. A coherent stop action for process termination enables dynamic reduction of the computation cost if there are insignificant changes in a video sequence. Instead of a static inference time, we thereby automatically increase the runtime depending on the object motion. Robustness and accuracy of our action decision network are evaluated on Laval and YCB video scenes where we significantly improve the state-of-the-art.


翻译:对象表面估计是机器人视觉和 AR 的有机部分。 先前的 6D 构成回收管道将问题作为回归任务或将构成空间分离进行分类。 我们改变这个范式, 将问题重新表述为行动决定程序, 最初的构成以渐进的离散步骤更新, 并按顺序将虚拟的 3D 转换成正确的解决方案。 神经网络估计可能从单一的 RGB 图像迭接方式移动, 并由此确定一个可接受的最终构成。 与培训特定对象的构成模型的其他方法相比, 我们学习了一种决定程序。 这允许一个轻量结构, 而该结构自然地对看不见的物体进行概括化。 如果视频序列发生微小的变化, 程序终止的一致停止动作可以动态降低计算成本。 而不是静态的推论时间, 我们因此自动增加运行时间, 取决于物体运动。 我们行动网络的旋转和精确度和精确度在Laval 和 YCB 视频场段进行评估, 在那里我们大大改进了艺术的状态 。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机视觉领域顶会CVPR 2018 接受论文列表
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
已删除
将门创投
5+阅读 · 2017年11月22日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
DPOD: Dense 6D Pose Object Detector in RGB images
Arxiv
5+阅读 · 2019年2月28日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
Arxiv
5+阅读 · 2018年4月13日
Arxiv
3+阅读 · 2018年3月14日
Arxiv
7+阅读 · 2017年12月26日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机视觉领域顶会CVPR 2018 接受论文列表
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
已删除
将门创投
5+阅读 · 2017年11月22日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员