Super-resolution (SR) is a coveted image processing technique for mobile apps ranging from the basic camera apps to mobile health. Existing SR algorithms rely on deep learning models with significant memory requirements, so they have yet to be deployed on mobile devices and instead operate in the cloud to achieve feasible inference time. This shortcoming prevents existing SR methods from being used in applications that require near real-time latency. In this work, we demonstrate state-of-the-art latency and accuracy for on-device super-resolution using a novel hybrid architecture called SplitSR and a novel lightweight residual block called SplitSRBlock. The SplitSRBlock supports channel-splitting, allowing the residual blocks to retain spatial information while reducing the computation in the channel dimension. SplitSR has a hybrid design consisting of standard convolutional blocks and lightweight residual blocks, allowing people to tune SplitSR for their computational budget. We evaluate our system on a low-end ARM CPU, demonstrating both higher accuracy and up to 5 times faster inference than previous approaches. We then deploy our model onto a smartphone in an app called ZoomSR to demonstrate the first-ever instance of on-device, deep learning-based SR. We conducted a user study with 15 participants to have them assess the perceived quality of images that were post-processed by SplitSR. Relative to bilinear interpolation -- the existing standard for on-device SR -- participants showed a statistically significant preference when looking at both images (Z=-9.270, p<0.01) and text (Z=-6.486, p<0.01).


翻译:超级分辨率(SR)是移动应用程序的一种令人羡慕的图像处理技术,从基本的相机应用程序到移动健康,现有的SR算法依赖于具有重要记忆要求的深学习模型,因此它们尚未在移动设备上部署,而是在云中运行,以达到可行的推算时间。这一缺陷使得现有的SR方法无法用于需要近实时悬浮的应用程序。在这项工作中,我们用名为 SplitSR 和名为 Splite SRBlock的新型轻量级图像残留块的新混合结构来展示我们最先进的Slittlement 270 超级分辨率和准确性。 SlipSRlock支持分解频道模式,允许剩余区保留空间信息,同时减少频道的计算。 SliptSR有一个混合设计,包括标准革命区块和轻量级残留区块,允许人们按其计算预算调整 SliptSR 。我们用一个低端的 ARM CPUP 显示我们的系统,显示其精确性和最高至5倍于以前的方法。我们随后在一个名为Slipal 0.0 SR 的智能手机上部署一个称为高级图像的模型,在叫做 Zeal- SR imal- imal- imal- imal- imal-assilling impal impal imact imact imact impal imact imact imact impal impal

1
下载
关闭预览

相关内容

图像超分辨率(SR)是提高图像分辨率的一类重要的图像处理技术以及计算机视觉中的视频。
【ACMMM2020】小规模行人检测的自模拟学习
专知会员服务
13+阅读 · 2020年9月25日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
109+阅读 · 2020年3月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员