Earnings call (EC), as a periodic teleconference of a publicly-traded company, has been extensively studied as an essential market indicator because of its high analytical value in corporate fundamentals. The recent emergence of deep learning techniques has shown great promise in creating automated pipelines to benefit the EC-supported financial applications. However, these methods presume all included contents to be informative without refining valuable semantics from long-text transcript and suffer from EC scarcity issue. Meanwhile, these black-box methods possess inherent difficulties in providing human-understandable explanations. To this end, in this paper, we propose a Multi-Domain Transformer-Based Counterfactual Augmentation, named MTCA, to address the above problems. Specifically, we first propose a transformer-based EC encoder to attentively quantify the task-inspired significance of critical EC content for market inference. Then, a multi-domain counterfactual learning framework is developed to evaluate the gradient-based variations after we perturb limited EC informative texts with plentiful cross-domain documents, enabling MTCA to perform unsupervised data augmentation. As a bonus, we discover a way to use non-training data as instance-based explanations for which we show the result with case studies. Extensive experiments on the real-world financial datasets demonstrate the effectiveness of interpretable MTCA for improving the volatility evaluation ability of the state-of-the-art by 14.2\% in accuracy.
翻译:作为一家公开交易公司的定期电话会议(EC),作为一家公开交易公司的定期电话会议,人们广泛研究了作为基本市场指标的黑箱方法,因为它在公司基本面上具有很高的分析价值。最近出现的深层次学习技术在创建自动化管道以有利于欧盟委员会支持的金融应用方面显示了巨大的希望。然而,这些方法假定所有内容都包含在信息上,而没有改进长文本记录的宝贵语义,并且受到欧盟委员会稀缺问题的影响。与此同时,这些黑箱方法在提供人所能够理解的解释方面有着固有的困难。为此,我们在本文件中提议采用一个名为MTCA的多面型变换机反事实增强功能,以解决上述问题。具体地说,我们首先提出一个基于变压器的EC编码器,以仔细量化欧盟委员会关键内容对市场推理的意义。然后,开发了一个多面反事实学习框架,以便在我们渗透了带有大量跨多面文件的欧盟信息文本之后,评估梯度的梯度变化,使MTCA能够进行不受监督的数据增强。我们首先提出一个基于真实数据的增强的数据增强能力的方法,我们通过对14种数据变现进行数据分析,我们用一种方法来展示了对数据进行不上的数据分析。