Bit-depth expansion (BDE) is one of the emerging technologies to display high bit-depth (HBD) image from low bit-depth (LBD) source. Existing BDE methods have no unified solution for various BDE situations, and directly learn a mapping for each pixel from LBD image to the desired value in HBD image, which may change the given high-order bits and lead to a huge deviation from the ground truth. In this paper, we design a bit restoration network (BRNet) to learn a weight for each pixel, which indicates the ratio of the replenished value within a rational range, invoking an accurate solution without modifying the given high-order bit information. To make the network adaptive for any bit-depth degradation, we investigate the issue in an optimization perspective and train the network under progressive training strategy for better performance. Moreover, we employ Wasserstein distance as a visual quality indicator to evaluate the difference of color distribution between restored image and the ground truth. Experimental results show our method can restore colorful images with fewer artifacts and false contours, and outperforms state-of-the-art methods with higher PSNR/SSIM results and lower Wasserstein distance. The source code will be made available at https://github.com/yuqing-liu-dut/bit-depth-expansion
翻译:位深度扩展( BDE) 是展示低位深度源( LBD) 高位深度图像( HBD) 的新兴技术之一。 现有的 BDE 方法对于各种 BDE 情况没有统一的解决办法, 直接学习从 LBD 图像到 HBD 图像中理想值的每个像素的映射, 这可能会改变给定的高顺序位位, 导致与地面真相的巨大偏离。 在本文中, 我们设计了一个稍微恢复网络( BRNet) 来学习每个像素的重量, 以显示在合理范围内补充值的比例, 在不修改给定的高顺序位位位位信息的情况下引用准确的解决方案 。 为了让网络适应任何位深度退化, 我们从优化角度来调查问题, 在渐进式培训战略下培训网络, 以便更好的表现。 此外, 我们使用瓦瑟斯坦距离作为视觉质量指标来评价恢复图像和地面真相之间的颜色分布差异。 实验结果显示我们的方法可以以更少的手工艺品和假雕像来恢复彩色图像的比例, 引用准确的精确度解决方案, 以及超越州- 远端- 将 SS/ SS/ 的远程数据 将 。 在高级源/ SS/ SS/ SS/ 将使用高级源 将 SS/ 。