Subclasses of TFNP (total functional NP) are usually defined by specifying a complete problem, which is necessarily in TFNP, and including all problems many-one reducible to it. We study two notions of how a TFNP problem can be reducible to an object, such as a complexity class, outside TFNP. This gives rise to subclasses of TFNP which capture some properties of that outside object. We show that well-known subclasses can arise in this way, for example PPA from reducibility to parity P and PLS from reducibility to P^NP. We study subclasses arising from PSPACE and the polynomial hierarchy, and show that they are characterized by the propositional proof systems Frege and constant-depth Frege, extending the known pairings between natural TFNP subclasses and proof systems. We study approximate counting from this point of view, and look for a subclass of TFNP that gives a natural home to combinatorial principles such as Ramsey which can be proved using approximate counting. We relate this to the recently-studied Long choice and Short choice problems.
翻译:暂无翻译