This paper proposes a data-driven systematic, consistent and non-exhaustive approach to Model Selection, that is an extension of the classical agnostic PAC learning model. In this approach, learning problems are modeled not only by a hypothesis space $\mathcal{H}$, but also by a Learning Space $\mathbb{L}(\mathcal{H})$, a poset of subspaces of $\mathcal{H}$, which covers $\mathcal{H}$ and satisfies a property regarding the VC dimension of related subspaces, that is a suitable algebraic search space for Model Selection algorithms. Our main contributions are a data-driven general learning algorithm to perform regularized Model Selection on $\mathbb{L}(\mathcal{H})$ and a framework under which one can, theoretically, better estimate a target hypothesis with a given sample size by properly modeling $\mathbb{L}(\mathcal{H})$ and employing high computational power. A remarkable consequence of this approach are conditions under which a non-exhaustive search of $\mathbb{L}(\mathcal{H})$ can return an optimal solution. The results of this paper lead to a practical property of Machine Learning, that the lack of experimental data may be mitigated by a high computational capacity. In a context of continuous popularization of computational power, this property may help understand why Machine Learning has become so important, even where data is expensive and hard to get.


翻译:本文建议了一种数据驱动的系统、一致和非详尽的模型选择方法, 这是一种经典不可知的 PAC 学习模式的延伸。 在这个方法中, 学习问题不仅以假设空间 $\ mathcal{H} 来模拟。 我们的主要贡献不仅是以假设空间 $\ mathbb{L} (\ mathcal{H}) 来模拟学习问题, 也是以学习空间 $\ mathcal{H} $( mathcal{H} $) 为模型选择的模型选择, 也就是以正确的模型模型规模更好地估算目标假设$\ mathbal{H} $( mathcal{H} $), 并满足了相关子空间的 VC 层面的属性, 这是模型选择算法中合适的代数搜索空间。 我们的主要贡献是数据驱动的模型选择法, 用于对 $max roupalalal deal deal deal deal a pain a preal develop exal deal deal deal deal deal exal ex ex ex ex ex romais may a main a exm exm exm a ex exm a exm exm a exm exal a a ex exm ex ex ex ex ex ex ex ex ex ex exm a a a ex exle a romal romal a a romal a a a romal exal a romal a a romal a exal be a exb a peral a peral a a romax a rob a a roal a mal a roal a roal roal roal roal ro ro ro ro ro ro roal a roal roal roal roal a ro ro ro ro ro ro ro ro roal a roal a ro roal roal a roal a roal a roal a roal a roal a ro ro roal roal a ro

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
4+阅读 · 2017年12月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Rectangular Flows for Manifold Learning
Arxiv
0+阅读 · 2021年10月29日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
4+阅读 · 2017年12月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员