Structural and computational understanding of tensors is the driving force behind faster matrix multiplication algorithms, the unraveling of quantum entanglement, and the breakthrough on the cap set problem. Strassen's asymptotic spectra program (SFCS 1986) characterizes optimal matrix multiplication algorithms through monotone functionals. Our work advances and makes novel connections among two recent developments in the study of tensors, namely (1) the slice rank of tensors, a notion of rank for tensors that emerged from the resolution of the cap set problem (Ann. of Math. 2017), and (2) the quantum functionals of tensors (STOC 2018), monotone functionals defined as optimizations over moment polytopes. More precisely, we introduce an extension of slice rank that we call weighted slice rank and we develop a minimax correspondence between the asymptotic weighted slice rank and the quantum functionals. Weighted slice rank encapsulates different notions of bipartiteness of quantum entanglement. The correspondence allows us to give a rank-type characterization of the quantum functionals. Moreover, whereas the original definition of the quantum functionals only works over the complex numbers, this new characterization can be extended to all fields. Thereby, in addition to gaining deeper understanding of Strassen's theory for the complex numbers, we obtain a proposal for quantum functionals over other fields. The finite field case is crucial for combinatorial and algorithmic problems where the field can be optimized over.
翻译:Expressen的无线光谱程序(SFCS 1986)通过单质功能将最佳矩阵倍增算算法定性为最佳矩阵倍增算法。我们的工作进展和在对Exrons研究的两个最新发展动态之间建立了新的联系,即:(1) Exors的切片级,这是从解决设定上限问题(数学的Ann. 2017年)中产生的对 Exors 等级的概念,(2) Exmors 的量子函数(STOC 2018), 单质函数被定义为对瞬时多面的优化。更准确地说,我们引入了切级扩展,我们称之为加权切级,我们开发了微缩缩缩成像对等,即高压切片级和量子功能函数的两种最新发展动态。 weight scraft scripal scrial discriminal discrible discrible,我们从中获得了对量级功能领域的初步定义, 而对于量级的精度领域,我们对量级的精度的精度只有对精度的精度的精度的精度的精度字段, 直判领域,我们对精度对精度的精度的精度的精度的精度的直径的外的外的直判领域,我们对精度对精度的直判领域只能对精度对精度对于直判领域,对量的直判领域,对细的直径的直径的直径的直径的外判领域,对细判,我们的直径的直径的直判,对于于直径的直径的直径的直径的直径的直径的直径的直径的直径对于直判领域,对于直径的直径的直径的直判,对于直判领域,对于直判领域,对于直判,我们的直判,对于直径的外判的直径的直径的直径的直径的外的直径的直径的直判。