This paper presents methods to study the causal effect of a binary treatment on a functional outcome with observational data. We define a functional causal parameter, the Functional Average Treatment Effect (FATE), and propose a semi-parametric outcome regression estimator. Quantifying the uncertainty in the estimation presents a challenge since existing inferential techniques developed for univariate outcomes cannot satisfactorily address the multiple comparison problem induced by the functional nature of the causal parameter. We show how to obtain valid inference on the FATE using simultaneous confidence bands, which cover the FATE with a given probability over the entire domain. Simulation experiments illustrate the empirical coverage of the simultaneous confidence bands in finite samples. Finally, we use the methods to infer the effect of early adult location on subsequent income development for one Swedish birth cohort.
翻译:Translated abstract:
本文提出了一种利用观察数据研究二元处理对函数性结果的因果效应的方法。我们定义了一个函数性因果参数——函数性平均处理效应(FATE),并提出了一种半参数化结果回归估计器。由于现有的针对单变量结果开发的推断技术无法令人满意地解决由因果参数的函数性质引起的多重比较问题,因此量化估计中的不确定性是一个挑战。我们展示了如何使用同时置信带获得关于FATE的有效推断,这些置信带在整个域上具有给定概率。模拟实验说明了在有限样本中同时置信带的经验覆盖率。最后,我们利用这些方法推断瑞典一个出生队列中早年位置对随后收入发展的影响。