In this paper, we introduce a general framework for fine-grained reductions of approximate counting problems to their decision versions. (Thus we use an oracle that decides whether any witness exists to multiplicatively approximate the number of witnesses with minimal overhead.) This mirrors a foundational result of Sipser (STOC 1983) and Stockmeyer (SICOMP 1985) in the polynomial-time setting, and a similar result of M\"uller (IWPEC 2006) in the FPT setting. Using our framework, we obtain such reductions for some of the most important problems in fine-grained complexity: the Orthogonal Vectors problem, 3SUM, and the Negative-Weight Triangle problem (which is closely related to All-Pairs Shortest Path). We also provide a fine-grained reduction from approximate #SAT to SAT. Suppose the Strong Exponential Time Hypothesis (SETH) is false, so that for some $1<c<2$ and all $k$ there is an $O(c^n)$-time algorithm for k-SAT. Then we prove that for all $k$, there is an $O((c+o(1))^n)$-time algorithm for approximate #$k$-SAT. In particular, our result implies that the Exponential Time Hypothesis (ETH) is equivalent to the seemingly-weaker statement that there is no algorithm to approximate #3-SAT to within a factor of $1+\epsilon$ in time $2^{o(n)}/\epsilon^2$ (taking $\epsilon > 0$ as part of the input).
翻译:在本文中,我们引入了微量削减其决定版本的大致计数问题的总框架。 (因此,我们使用一个神器来决定是否有任何证人存在以倍增方式接近拥有最低管理费的证人人数。 ) 这反映了Sipser (STOC 1983) 和 Stockmeyer (SICOMP 1985) 在多元时间设置中的基本结果, 以及FPT 设置中 M\"uller (IWPEC 2006) 的类似结果。 使用我们的框架, 我们为一些在微量复杂程度中最重要的问题获得了这种削减: Orthogonial 矢量问题、 3SUM 和负 Weight Trigle 问题( 这与所有Pairs 最短路径密切相关 ) 。 我们还提供了从大约 #SAT 到 SAT 的精确减少。 假设强烈的感知觉时间伪值(SETHET) 是不真实的, 因此对于大约1 < c=2美元, 和所有美 美元 美元在 KSAT (c) 某时值的O- 美元 等值计算中, 美元。