Modern Lightweight robots are constructed to be collaborative, which often results in a low structural stiffness compared to conventional rigid robots. Therefore, the controller must be able to handle the dynamic oscillatory effect mainly due to the intrinsic joint elasticity. Singular perturbation theory makes it possible to decompose the flexible joint dynamics into fast and slow subsystems. This model separation provides additional features to incorporate future knowledge of the jointlevel dynamical behavior within the controller design using the Model Predictive Control (MPC) technique. In this study, different architectures are considered that combine the method of Singular Perturbation and MPC. For Singular Perturbation, the parameters that influence the validity of using this technique to control a flexible-joint robot are investigated. Furthermore, limits on the input constraints for the future trajectory are considered with MPC. The position control performance and robustness against external forces of each architecture are validated experimentally for a flexible joint robot.
翻译:现代轻量机器人的构造是协作性的,往往导致与传统硬性机器人相比结构僵硬程度较低。 因此, 控制器必须能够处理动态动动动动动动动画效果, 主要是因为存在内在的联合弹性。 单振动理论使得有可能将灵活的联合动态分解为快速和慢速的子系统。 这种模型分离提供了额外的特征, 以便利用模型预测控制技术( MPC) 将未来对联合动态行为的认识纳入控制器设计中。 在这项研究中, 不同的结构被视为将 Singulal Perturbation 和 MPC 方法结合起来。 对于 Singularturbation, 对影响使用该技术控制灵活联合机器人有效性的参数进行了调查。 此外, 与 MPC 一起考虑对未来轨道输入限制的限制。 对每种结构的定位控制性能和对外部力量的坚韧性进行测试后, 将试用一个灵活的联合机器人。