The classification of forged videos has been a challenge for the past few years. Deepfake classifiers can now reliably predict whether or not video frames have been tampered with. However, their performance is tied to both the dataset used for training and the analyst's computational power. We propose a deepfake classification method that operates in the latent space of a state-of-the-art generative adversarial network (GAN) trained on high-quality face images. The proposed method leverages the structure of the latent space of StyleGAN to learn a lightweight classification model. Experimental results on a standard dataset reveal that the proposed approach outperforms other state-of-the-art deepfake classification methods. To the best of our knowledge, this is the first study showing the interest of the latent space of StyleGAN for deepfake classification. Combined with other recent studies on the interpretation and manipulation of this latent space, we believe that the proposed approach can help in developing robust deepfake classification methods based on interpretable high-level properties of face images.


翻译:近年来,确认伪造视频一直是一个挑战。Deepfake分类器现在可以可靠地预测视频帧是否被篡改。然而,它们的性能与用于训练的数据集和分析人员的计算能力密切相关。我们提出了一种在训练高质量人脸图像的最先进的生成对抗网络(GAN)的潜空间中操作的Deepfake分类方法。所提出的方法利用StyleGAN的潜空间结构来学习轻量级分类模型。在标准数据集上的实验结果表明,所提出的方法优于其他最先进的Deepfake分类方法。据我们了解,这是首个展示利用StyleGAN潜空间进行Deepfake分类的研究。结合最近关于解释和操纵潜空间的其他研究,我们相信所提出的方法可以帮助开发基于可解释的高级脸部属性的强健Deepfake分类方法。

0
下载
关闭预览

相关内容

人工智能药物发现,讲述AI与药物交叉应用研究
专知会员服务
155+阅读 · 2021年1月28日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月18日
Arxiv
0+阅读 · 2023年5月18日
Arxiv
21+阅读 · 2020年10月11日
VIP会员
相关VIP内容
人工智能药物发现,讲述AI与药物交叉应用研究
专知会员服务
155+阅读 · 2021年1月28日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员