In this paper we propose the use of a continuous data assimilation algorithm for miscible flow models in a porous medium. In the absence of initial conditions for the model, observed sparse measurements are used to generate an approximation to the true solution. Under certain assumption of the sparse measurements and their incorporation into the algorithm it can be shown that the resulting approximate solution converges to the true solution at an exponential rate as time progresses. Various numerical examples are considered in order to validate the suitability of the algorithm.
翻译:在本文中,我们建议使用连续数据同化算法,在多孔介质中用于不强制流动模型。在没有模型的初始条件的情况下,观察到的稀少的测量方法被用来产生与真正解决方案的近似值。根据对稀疏测量方法及其纳入算法的某些假设,可以证明,由此产生的近似解决方案随着时间的演变以指数速度与真实解决方案相融合。为了验证算法的适合性,可以考虑各种数字实例。