Soft robotics is a thriving branch of robotics which takes inspiration from nature and uses affordable flexible materials to design adaptable non-rigid robots. However, their flexible behavior makes these robots hard to model, which is essential for a precise actuation and for optimal control. For system modelling, learning-based approaches have demonstrated good results, yet they fail to consider the physical structure underlying the system as an inductive prior. In this work, we take inspiration from sensorimotor learning, and apply a Graph Neural Network to the problem of modelling a non-rigid kinematic chain (i.e. a robotic soft hand) taking advantage of two key properties: 1) the system is compositional, that is, it is composed of simple interacting parts connected by edges, 2) it is order invariant, i.e. only the structure of the system is relevant for predicting future trajectories. We denote our model as the 'Sensorimotor Graph' since it learns the system connectivity from observation and uses it for dynamics prediction. We validate our model in different scenarios and show that it outperforms the non-structured baselines in dynamics prediction while being more robust to configurational variations, tracking errors or node failures.
翻译:软体机器人是机器人的一个蓬勃的分支,它从自然中汲取灵感,并使用负担得起的灵活材料设计适应性非硬体机器人。然而,它们的灵活行为使得这些机器人难以建模,这对于精确的激活和最佳控制至关重要。对于系统建模来说,以学习为基础的方法已经显示出良好的效果,但是它们没有将系统背后的物理结构视为一个诱导性的先行。在这项工作中,我们从感官学中汲取灵感,并运用一个图形神经网络来模拟一个非硬体运动链(即机器人软手),以利用两种关键特性:1)系统是构造性的,也就是说,它由与边缘相连的简单互动部分组成,2)它是一种自变的,也就是说,只有系统的结构才与预测未来的轨迹有关。我们把我们的模型记为“感官机图”,因为它从观察中学习了系统连接性能学,并用于动态预测。我们验证了我们的模型,并显示它超越了不同情景中的模型,并显示它超越了边缘相连接的简单互动部分,在动态预测中没有更稳健的基线性变。