We study symmetric tensor decompositions, i.e., decompositions of the form $T = \sum_{i=1}^r u_i^{\otimes 3}$ where $T$ is a symmetric tensor of order 3 and $u_i \in \mathbb{C}^n$.In order to obtain efficient decomposition algorithms, it is necessary to require additional properties from $u_i$. In this paper we assume that the $u_i$ are linearly independent. This implies $r \leq n$,that is, the decomposition of T is undercomplete. We give a randomized algorithm for the following problem in the exact arithmetic model of computation: Let $T$ be an order-3 symmetric tensor that has an undercomplete decomposition.Then given some $T'$ close to $T$, an accuracy parameter $\varepsilon$, and an upper bound B on the condition number of the tensor, output vectors $u'_i$ such that $||u_i - u'_i|| \leq \varepsilon$ (up to permutation and multiplication by cube roots of unity) with high probability. The main novel features of our algorithm are: 1) We provide the first algorithm for this problem that runs in linear time in the size of the input tensor. More specifically, it requires $O(n^3)$ arithmetic operations for all accuracy parameters $\varepsilon =$ 1/poly(n) and B = poly(n). 2) Our algorithm is robust, that is, it can handle inverse-quasi-polynomial noise (in $n$,B,$\frac{1}{\varepsilon}$) in the input tensor. 3) We present a smoothed analysis of the condition number of the tensor decomposition problem. This guarantees that the condition number is low with high probability and further shows that our algorithm runs in linear time, except for some rare badly conditioned inputs. Our main algorithm is a reduction to the complete case ($r=n$) treated in our previous work [Koiran,Saha,CIAC 2023]. For efficiency reasons we cannot use this algorithm as a blackbox. Instead, we show that it can be run on an implicitly represented tensor obtained from the input tensor by a change of basis.
翻译:暂无翻译