Oriented object detection is a challenging task in aerial images since the objects in aerial images are displayed in arbitrary directions and are frequently densely packed. The mainstream detectors describe rotating objects using a five-parament or eight-parament representations, which suffer from representation ambiguity for orientated object definition. In this paper, we propose a novel representation method based on area ratio of parallelogram, called ARP. Specifically, ARP regresses the minimum bounding rectangle of the oriented object and three area ratios. Three area ratios include the area ratio of a directed object to the smallest circumscribed rectangle and two parallelograms to the minimum circumscribed rectangle. It simplifies offset learning and eliminates the issue of angular periodicity or label point sequences for oriented objects. To further remedy the confusion issue of nearly horizontal objects, the area ratio between the object and its minimal circumscribed rectangle is employed to guide the selection of horizontal or oriented detection for each object. Moreover, the rotated efficient Intersection over Union (R-EIoU) loss with horizontal bounding box and three area ratios are designed to optimize the bounding box regression for rotating objects. Experimental results on remote sensing datasets, including HRSC2016, DOTA, and UCAS-AOD, show that our method achieves superior detection performance than many state-of-the-art approaches.


翻译:由于空中图像中的物体以任意方向显示,而且往往被密集地包扎,因此,以物体定位的物体探测是航空图像中一项具有挑战性的任务。主流探测器使用五分制或八分制表示说明旋转对象,这些表示方式在定向物体定义中存在模棱两可的模棱两可之处。在本文件中,我们提议了一种基于平行图像区域比的新式表达方法,称为ARP。具体地说,ARP将方向物体最小的捆绑矩形和三个区域比率降低为三个区域比率。三个区域比率包括定向物体与最小的受限制矩形之间的区域比和最小受限制矩形的两张平行图。它简化了学习,并消除了定向物体的角周期或标签点序列问题。为了进一步补救近横向物体的混乱问题,物体与最小的受限制矩形之间的区域比。具体来说,ARPR Ref refrequet 用于指导对每个物体的横向或定向探测。此外,带有横向捆绑框的联盟损失和三个区域比率的射线对最小受限制的物体的面积比。它能抵消了学习,并消除了方向的角周期周期周期周期周期或标签序列顺序,消除了定向物体的物体的矩阵,包括了我们旋转式的轨道对轨道对轨道对轨道的轨道对轨道对轨道对轨道对轨道对轨道的定位,对轨道的定位,对轨道的定位,对轨道对轨道对轨道的定位,对轨道对轨道对轨道对轨道对轨道的定位,对轨道的定位,对轨道对轨道对等。

1
下载
关闭预览

相关内容

开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
已删除
将门创投
5+阅读 · 2019年4月15日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Faster R-CNN
数据挖掘入门与实战
4+阅读 · 2018年4月20日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Scale-Aware Trident Networks for Object Detection
Arxiv
4+阅读 · 2019年1月7日
Arxiv
5+阅读 · 2018年5月16日
VIP会员
相关资讯
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
已删除
将门创投
5+阅读 · 2019年4月15日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Faster R-CNN
数据挖掘入门与实战
4+阅读 · 2018年4月20日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Top
微信扫码咨询专知VIP会员