When solving optimization problems with black-box approaches, the algorithms gather valuable information about the problem instance during the optimization process. This information is used to adjust the distributions from which new solution candidates are sampled. In fact, a key objective in evolutionary computation is to identify the most effective ways to collect and exploit instance knowledge. However, while considerable work is devoted to adjusting hyper-parameters of black-box optimization algorithms on the fly or exchanging some of its modular components, we barely know how to effectively switch between different black-box optimization algorithms. In this work, we build on the recent study of Vermetten et al. [GECCO 2020], who presented a data-driven approach to investigate promising switches between pairs of algorithms for numerical black-box optimization. We replicate their approach with a portfolio of five algorithms and investigate whether the predicted performance gains are realized when executing the most promising switches. Our results suggest that with a single switch between two algorithms, we outperform the best static choice among the five algorithms on 48 out of the 120 considered problem instances, the 24 BBOB functions in five different dimensions. We also show that for switching between BFGS and CMA-ES, a proper warm-starting of the parameters is crucial to realize high-performance gains. Lastly, with a sensitivity analysis, we find the actual performance gain per run is largely affected by the switching point, and in some cases, the switching point yielding the best actual performance differs from the one computed from the theoretical gain.
翻译:当用黑箱方法解决优化问题时,算法会收集到关于优化过程中问题实例的宝贵信息。 这些信息用于调整分配方法, 从中抽取新的解决方案候选人。 事实上, 进化计算中的一个关键目标是找出最有效的收集和利用实例知识的方法。 然而, 虽然大量工作致力于调整在飞行上的黑箱优化算法的超参数, 或者交换其模块化部分, 我们几乎不知道如何在优化过程中有效地转换不同的黑箱优化算法。 在这项工作中, 我们利用了最近对Vermetten 等人的研究[GecCO 。 [GecCO 2020], 他介绍了一种数据驱动的方法, 调查数字黑箱优化的两种算法之间有希望的开关。 我们用五种算法复制了它们的方法, 并调查在使用最有希望的开关时是否实现了预期的绩效收益。 我们的结果表明, 在120个问题案例中,我们比BOB 24 函数在五个不同层面, 提供了一种数据驱动方法, 我们从实际的分数, 开始一个高度的精度, 转换了BBBBBB 的精度分析, 的精度, 最后, 的精度在转换了一种精度中, 的精度中, 的精度, 的精度, 的进度, 我们的精度在转换了BGS 的进度, 的精度,最后的进度在转换了一种精确度, 的精度, 的精度, 的精度, 的精度, 的精度, 的精度, 的精度, 的进度, 的进度,我们的进度, 的进度, 的进度, 的进度,最后的进度, 的进度,我们的进度, 的进度, 进入的进度, 的进度, 的进度, 的进度, 的进度,最后的进度, 的进度, 的进度, 的进度, 进入的进度, 的进度, 的进度, 进入的进度, 的进度, 进入的进度, 的进度, 的进度, 的进度, 方向的进度, 的进度, 进入的进度,