When solving optimization problems with black-box approaches, the algorithms gather valuable information about the problem instance during the optimization process. This information is used to adjust the distributions from which new solution candidates are sampled. In fact, a key objective in evolutionary computation is to identify the most effective ways to collect and exploit instance knowledge. However, while considerable work is devoted to adjusting hyper-parameters of black-box optimization algorithms on the fly or exchanging some of its modular components, we barely know how to effectively switch between different black-box optimization algorithms. In this work, we build on the recent study of Vermetten et al. [GECCO 2020], who presented a data-driven approach to investigate promising switches between pairs of algorithms for numerical black-box optimization. We replicate their approach with a portfolio of five algorithms and investigate whether the predicted performance gains are realized when executing the most promising switches. Our results suggest that with a single switch between two algorithms, we outperform the best static choice among the five algorithms on 48 out of the 120 considered problem instances, the 24 BBOB functions in five different dimensions. We also show that for switching between BFGS and CMA-ES, a proper warm-starting of the parameters is crucial to realize high-performance gains. Lastly, with a sensitivity analysis, we find the actual performance gain per run is largely affected by the switching point, and in some cases, the switching point yielding the best actual performance differs from the one computed from the theoretical gain.


翻译:当用黑箱方法解决优化问题时,算法会收集到关于优化过程中问题实例的宝贵信息。 这些信息用于调整分配方法, 从中抽取新的解决方案候选人。 事实上, 进化计算中的一个关键目标是找出最有效的收集和利用实例知识的方法。 然而, 虽然大量工作致力于调整在飞行上的黑箱优化算法的超参数, 或者交换其模块化部分, 我们几乎不知道如何在优化过程中有效地转换不同的黑箱优化算法。 在这项工作中, 我们利用了最近对Vermetten 等人的研究[GecCO 。 [GecCO 2020], 他介绍了一种数据驱动的方法, 调查数字黑箱优化的两种算法之间有希望的开关。 我们用五种算法复制了它们的方法, 并调查在使用最有希望的开关时是否实现了预期的绩效收益。 我们的结果表明, 在120个问题案例中,我们比BOB 24 函数在五个不同层面, 提供了一种数据驱动方法, 我们从实际的分数, 开始一个高度的精度, 转换了BBBBBB 的精度分析, 的精度, 最后, 的精度在转换了一种精度中, 的精度中, 的精度, 的精度, 的进度, 我们的精度在转换了BGS 的进度, 的精度,最后的进度在转换了一种精确度, 的精度, 的精度, 的精度, 的精度, 的精度, 的精度, 的精度, 的进度, 的进度,我们的进度, 的进度, 的进度, 的进度,最后的进度, 的进度,我们的进度, 的进度, 进入的进度, 的进度, 的进度, 的进度, 的进度,最后的进度, 的进度, 的进度, 的进度, 进入的进度, 的进度, 的进度, 进入的进度, 的进度, 进入的进度, 的进度, 的进度, 的进度, 方向的进度, 的进度, 进入的进度,

0
下载
关闭预览

相关内容

在科学,计算和工程学中,黑盒是一种设备,系统或对象,可以根据其输入和输出(或传输特性)对其进行查看,而无需对其内部工作有任何了解。 它的实现是“不透明的”(黑色)。 几乎任何事物都可以被称为黑盒:晶体管,引擎,算法,人脑,机构或政府。为了使用典型的“黑匣子方法”来分析建模为开放系统的事物,仅考虑刺激/响应的行为,以推断(未知)盒子。 该黑匣子系统的通常表示形式是在该方框中居中的数据流程图。黑盒的对立面是一个内部组件或逻辑可用于检查的系统,通常将其称为白盒(有时也称为“透明盒”或“玻璃盒”)。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
0+阅读 · 2023年3月6日
Arxiv
11+阅读 · 2022年9月1日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员