Explainability plays an increasingly important role in machine learning. Because reinforcement learning (RL) involves interactions between states and actions over time, explaining an RL policy is more challenging than that of supervised learning. Furthermore, humans view the world from causal lens and thus prefer causal explanations over associational ones. Therefore, in this paper, we develop a causal explanation mechanism that quantifies the causal importance of states on actions and such importance over time. Moreover, via a series of simulation studies including crop irrigation, Blackjack, collision avoidance, and lunar lander, we demonstrate the advantages of our mechanism over state-of-the-art associational methods in terms of RL policy explanation.
翻译:解释性在机器学习中发挥着越来越重要的作用。 因为强化学习(RL)涉及国家与行动之间的长期互动,解释RL政策比监督性学习更具挑战性。 此外,人类从因果角度看待世界,因此更喜欢因果解释而不是关联性解释。 因此,在本文中,我们开发了一个因果解释机制,量化国家在行动上的因果重要性以及长期如此重要性。 此外,通过一系列模拟研究,包括作物灌溉、21点、避免碰撞和月球着陆研究,我们展示了我们的机制在RL政策解释方面对最先进的关联方法的优势。