3D neural networks have become prevalent for many 3D vision tasks including object detection, segmentation, registration, and various perception tasks for 3D inputs. However, due to the sparsity and irregularity of 3D data, custom 3D operators or network designs have been the primary focus of 3D research, while the size of networks or efficacy of parameters has been overlooked. In this work, we perform the first comprehensive study on the weight sparsity of spatially sparse 3D convolutional networks and propose a compact weight-sparse and spatially sparse 3D convnet (WS^3-ConvNet) for semantic segmentation and instance segmentation. We employ various network pruning strategies to find compact networks and show our WS^3-ConvNet achieves minimal loss in performance (2.15% drop) with orders-of-magnitude smaller number of parameters (1/100 compression rate). Finally, we systematically analyze the compression patterns of WS^3-ConvNet and show interesting emerging sparsity patterns common in our compressed networks to further speed up inference.


翻译:3D 神经网络 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D 3 3 3D 3D 3D 3D 3D 3D 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3D 3 3 3 D 3 3 3 D 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
一份简单《图神经网络》教程,28页ppt
专知会员服务
127+阅读 · 2020年8月2日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Review: deep learning on 3D point clouds
Arxiv
5+阅读 · 2020年1月17日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关论文
Review: deep learning on 3D point clouds
Arxiv
5+阅读 · 2020年1月17日
Arxiv
24+阅读 · 2018年10月24日
Top
微信扫码咨询专知VIP会员