Model selection criteria are one of the most important tools in statistics. Proofs showing a model selection criterion is asymptotically optimal are tailored to the type of model (linear regression, quantile regression, penalized regression, etc.), the estimation method (linear smoothers, maximum likelihood, generalized method of moments, etc.), the type of data (i.i.d., dependent, high dimensional, etc.), and the type of model selection criterion. Moreover, assumptions are often restrictive and unrealistic making it a slow and winding process for researchers to determine if a model selection criterion is selecting an optimal model. This paper provides general proofs showing asymptotic optimality for a wide range of model selection criteria under general conditions. This paper not only asymptotically justifies model selection criteria for most situations, but it also unifies and extends a range of previously disparate results.
翻译:暂无翻译