Deep machine learning models are increasingly deployedin the wild for providing services to users. Adversaries maysteal the knowledge of these valuable models by trainingsubstitute models according to the inference results of thetargeted deployed models. Recent data-free model stealingmethods are shown effective to extract the knowledge of thetarget model without using real query examples, but they as-sume rich inference information, e.g., class probabilities andlogits. However, they are all based on competing generator-substitute networks and hence encounter training instability.In this paper we propose a data-free model stealing frame-work,MEGA, which is based on collaborative generator-substitute networks and only requires the target model toprovide label prediction for synthetic query examples. Thecore of our method is a model stealing optimization con-sisting of two collaborative models (i) the substitute modelwhich imitates the target model through the synthetic queryexamples and their inferred labels and (ii) the generatorwhich synthesizes images such that the confidence of thesubstitute model over each query example is maximized. Wepropose a novel coordinate descent training procedure andanalyze its convergence. We also empirically evaluate thetrained substitute model on three datasets and its applicationon black-box adversarial attacks. Our results show that theaccuracy of our trained substitute model and the adversarialattack success rate over it can be up to 33% and 40% higherthan state-of-the-art data-free black-box attacks.
翻译:在野外越来越多地部署深机学习模型,以便向用户提供服务。反正,这些模型可能根据目标部署模型的推断结果,通过培训替代模型来获取对这些宝贵模型的了解。最近的无数据模型窃取方法显示在不使用真实的查询实例的情况下,能够有效地获取目标模型的知识,但是它们包含丰富的推断信息,例如,等级概率和标签。然而,它们都以相互竞争的发电机替代网络为基础,从而遇到培训不稳定。在本文中,我们提议了一个无数据模型,即无数据模型,盗窃框架工作,MEGA,该模型以协作的发电机替代网络为基础,仅需要目标模型为合成查询实例提供标签预测。我们方法的核心是一个模型,以盗用两个协作模型的最佳组合,(一)替代目标模型,例如,通过合成查询样本及其推断标签,以及(二)这些替代模型的组合图像,使得替代模型对每个查询示例的信心最大化。我们主张对40比标准更高级的更高级框架-升级框架-升级模型-升级的模型-排序培训程序,并测试我们所训练的升级的模型-模拟-测试了我们的攻击率率的替代数据。我们用来替代的模型-测试了它的模型-测试。我们用来替代。我们可以用来替代的模型-测试。