Classes of set functions along with a choice of ground set are a bedrock to determine and develop corresponding variants of greedy algorithms to obtain efficient solutions for combinatorial optimization problems. The class of approximate constrained submodular optimization has seen huge advances at the intersection of good computational efficiency, versatility and approximation guarantees while exact solutions for unconstrained submodular optimization are NP-hard. What is an alternative to situations when submodularity does not hold? Can efficient and globally exact solutions be obtained? We introduce one such new frontier: The class of quasi-concave set functions induced as a dual class to monotone linkage functions. We provide a parallel algorithm with a time complexity over $n$ processors of $\mathcal{O}(n^2g) +\mathcal{O}(\log{\log{n}})$ where $n$ is the cardinality of the ground set and $g$ is the complexity to compute the monotone linkage function that induces a corresponding quasi-concave set function via a duality. The complexity reduces to $\mathcal{O}(gn\log(n))$ on $n^2$ processors and to $\mathcal{O}(gn)$ on $n^3$ processors. Our algorithm provides a globally optimal solution to a maxi-min problem as opposed to submodular optimization which is approximate. We show a potential for widespread applications via an example of diverse feature subset selection with exact global maxi-min guarantees upon showing that a statistical dependency measure called distance correlation can be used to induce a quasi-concave set function.


翻译:设定函数的分类, 加上对地面设置的选择, 是确定和开发相应的贪婪算法变种以获得组合优化问题的高效解决方案的基石 。 近似受限制亚模式优化类别在计算效率、 多功能性和近似保障的交叉点上取得了巨大进步, 而未限制亚模式优化的精确解决方案则是 NP- 硬。 美元是地面设置和美元问题的核心部分的替代方案是什么? 我们能否找到一个这样的新边框 : 类 类 类 类 准 concave 的贪婪算法, 以双级为单调连接功能。 我们提供一个具有时间复杂性的平行算法, 超过$\\ mathcal{O} (n\2g) QmallQQLiscal% Om) 。 美元是将单调的单调连接功能( eg- conve conve ) 函数通过双轨制, 导致相应的 类 准 conve conve 设置功能 。 级函数的复杂度降低到 $mathcal{ O_ lig lig lideal_ cal_ exal_ exal_ a procuilate a proclemental_ a proclementalmental_ a proclementalmental_ a procleglegleglemental) roclegleglemental_ a routtal_ a roglegleglegleglementaldroclemental

0
下载
关闭预览

相关内容

专知会员服务
82+阅读 · 2021年7月31日
专知会员服务
53+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
【微众银行】联邦学习白皮书_v2.0,48页pdf,
专知会员服务
167+阅读 · 2020年4月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月14日
Arxiv
0+阅读 · 2021年10月14日
Arxiv
0+阅读 · 2021年10月13日
Arxiv
0+阅读 · 2021年10月13日
Arxiv
0+阅读 · 2021年10月12日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
VIP会员
相关VIP内容
专知会员服务
82+阅读 · 2021年7月31日
专知会员服务
53+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
【微众银行】联邦学习白皮书_v2.0,48页pdf,
专知会员服务
167+阅读 · 2020年4月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员