Radiology reports are the main form of communication between radiologists and other clinicians, and contain important information for patient care. However in order to use this information for research it is necessary to convert the raw text into structured data suitable for analysis. Domain specific contextual word embeddings have been shown to achieve impressive accuracy at such natural language processing tasks in medicine. In this work we pre-trained a contextual embedding BERT model using breast radiology reports and developed a classifier that incorporated the embedding with auxiliary global textual features in order to perform a section tokenization task. This model achieved a 98% accuracy at segregating free text reports into sections of information outlined in the Breast Imaging Reporting and Data System (BI-RADS) lexicon, a significant improvement over the Classic BERT model without auxiliary information. We then evaluated whether using section tokenization improved the downstream extraction of the following fields: modality/procedure, previous cancer, menopausal status, purpose of exam, breast density and background parenchymal enhancement. Using the BERT model pre-trained on breast radiology reports combined with section tokenization resulted in an overall accuracy of 95.9% in field extraction. This is a 17% improvement compared to an overall accuracy of 78.9% for field extraction for models without section tokenization and with Classic BERT embeddings. Our work shows the strength of using BERT in radiology report analysis and the advantages of section tokenization in identifying key features of patient factors recorded in breast radiology reports.


翻译:放射学报告是放射学家和其他临床医生之间沟通的主要形式,含有病人护理的重要信息。但是,为了使用这一信息,有必要将原始文本转换成适合于分析的结构性数据。 已经显示,在医学中,在自然语言处理任务中,内含具体内容的字嵌入达到了令人印象深刻的准确性。 在这项工作中,我们预先培训了使用乳房放射学报告的背景嵌入BERT模型,并开发了一个分类器,将嵌入辅助性全球文本特征,以便执行一个部分的诊断性任务。这一模型在将免费文本报告与乳房成形报告和数据系统(BI-RADS)中概述的信息部分分离时,实现了98%的准确性。 在不附带辅助信息的典型BERT模型中,一个显著的改进性,然后我们用部分的象征性改进了以下领域下游的提取:模式/程序、以前的癌症、更年期状态、检查的目的、乳房密度和背景精度增强。 这个模型在乳房放射学报告方面经过预先培训的模型,连同部分的标志性报告合并,在不包含信息的分类的索引式报告中,在全面提取的精确性报告中,在B类的精确性报告中,将显示:实地的准确性报告的精确性报告在B的17.9 %的实地中,在全面提取中,用于实地的精确性报告,在全面提取的精确性报告。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
【2020新书】数据科学与机器学习导论,220页pdf
专知会员服务
81+阅读 · 2020年9月14日
专知会员服务
18+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
站在BERT肩膀上的NLP新秀们(PART III)
AINLP
11+阅读 · 2019年6月18日
站在BERT肩膀上的NLP新秀们:XLMs、MASS和UNILM
PaperWeekly
16+阅读 · 2019年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
用 TensorFlow hub 在 Keras 中做 ELMo 嵌入
AI研习社
5+阅读 · 2019年5月12日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
30+阅读 · 2021年7月7日
GeomCA: Geometric Evaluation of Data Representations
Arxiv
11+阅读 · 2021年5月26日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
4+阅读 · 2019年9月5日
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
【2020新书】数据科学与机器学习导论,220页pdf
专知会员服务
81+阅读 · 2020年9月14日
专知会员服务
18+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
站在BERT肩膀上的NLP新秀们(PART III)
AINLP
11+阅读 · 2019年6月18日
站在BERT肩膀上的NLP新秀们:XLMs、MASS和UNILM
PaperWeekly
16+阅读 · 2019年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
用 TensorFlow hub 在 Keras 中做 ELMo 嵌入
AI研习社
5+阅读 · 2019年5月12日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员