Storytelling and narrative are fundamental to human experience, intertwined with our social and cultural engagement. As such, researchers have long attempted to create systems that can generate stories automatically. In recent years, powered by deep learning and massive data resources, automatic story generation has shown significant advances. However, considerable challenges, like the need for global coherence in generated stories, still hamper generative models from reaching the same storytelling ability as human narrators. To tackle these challenges, many studies seek to inject structured knowledge into the generation process, which is referred to as structure knowledge-enhanced story generation. Incorporating external knowledge can enhance the logical coherence among story events, achieve better knowledge grounding, and alleviate over-generalization and repetition problems in stories. This survey provides the latest and comprehensive review of this research field: (i) we present a systematical taxonomy regarding how existing methods integrate structured knowledge into story generation; (ii) we summarize involved story corpora, structured knowledge datasets, and evaluation metrics; (iii) we give multidimensional insights into the challenges of knowledge-enhanced story generation and cast light on promising directions for future study.
翻译:故事和叙事是人类经验的基础,与我们的社会和文化参与交织在一起。因此,研究人员长期以来一直试图创建能够自动产生故事的系统。近年来,在深层次学习和大量数据资源的帮助下,自动故事生成显示出显著的进步。然而,巨大的挑战,如在生成的故事中需要全球一致性,仍然阻碍基因模型与人类故事生成能力相适应。为了应对这些挑战,许多研究试图将结构化知识注入生成过程,即结构化知识强化故事生成过程。纳入外部知识可以加强故事事件之间的逻辑一致性,实现更好的知识定位,缓解故事中的超常和重复问题。这一调查为这一研究领域提供了最新和全面的审查:(一) 我们提出一个系统分类方法,说明现有方法如何将结构化知识纳入故事生成过程;(二) 我们总结涉及的故事体、结构化知识数据集和评价指标;(三) 我们从多方面深入了解知识强化故事生成的挑战,并为未来研究指明有希望的方向。