Intelligent and autonomous troubleshooting is a crucial enabler for the current 5G and future 6G networks. In this work, we develop a flexible architecture for detecting anomalies in adaptive video streaming comprising three main components: i) A pattern recognizer that learns a typical pattern for video quality from the client-side application traces of a specific reference video, ii) A predictor for mapping Radio Frequency (RF) performance indicators collected on the network-side using user-based traces to a video quality measure, iii) An anomaly detector for comparing the predicted video quality pattern with the typical pattern to identify anomalies. We use real network traces (i.e., on-device measurements) collected in different geographical locations and at various times of day to train our machine learning models. We perform extensive numerical analysis to demonstrate key parameters impacting correct video quality prediction and anomaly detection. In particular, we have shown that the video playback time is the most crucial parameter determining the video quality since buffering continues during the playback and resulting in better video quality further into the playback. However, we also reveal that RF performance indicators characterizing the quality of the cellular connectivity are required to correctly predict QoE in anomalous cases. Then, we have exhibited that the mean maximum F1-score of our method is 77%, verifying the efficacy of our models. Our architecture is flexible and autonomous, so one can apply it to -- and operate with -- other user applications as long as the relevant user-based traces are available.
翻译:智能和自主排除故障是当前5G和未来6G网络的关键助推器。在这项工作中,我们开发了一个灵活的架构,以探测适应性视频流流中的异常现象,包括三个主要组成部分:(一) 一个模式识别器,从客户端应用程序中学习一个典型的视频质量模式,具体参考视频的痕迹,(二) 一个预测器,用于利用基于用户的微量对网络端收集的无线电频率业绩指标进行绘图,使用视频质量计量,(三) 一个异常探测器,用来比较预测的视频质量模式和典型模式,以查明异常现象。我们使用在不同地理位置和不同时段收集的真实网络跟踪(即在设备上的测量),以培训我们的机器学习模式。我们进行广泛的数字分析,以展示影响正确视频质量预测和异常检测的关键参数。特别是,我们显示视频回放时间是确定视频质量的最关键参数,因为基于视频的跟踪持续进行缓冲,并使视频质量更灵活地进入回放中。但我们还发现,我们使用真实的网络连接质量的实时性指标是长期的,我们可以正确预测一个连续运行的用户结构。