The Conditional Preference Network (CP-net) graphically represents user's qualitative and conditional preference statements under the ceteris paribus interpretation. The constrained CP-net is an extension of the CP-net, to a set of constraints. The existing algorithms for solving the constrained CP-net require the expensive dominance testing operation. We propose three approaches to tackle this challenge. In our first solution, we alter the constrained CP-net by eliciting additional relative importance statements between variables, in order to have a total order over the outcomes. We call this new model, the constrained Relative Importance Network (constrained CPR-net). Consequently, We show that the Constrained CPR-net has one single optimal outcome (assuming the constrained CPR-net is consistent) that we can obtain without dominance testing. In our second solution, we extend the Lexicographic Preference Tree (LP-tree) to a set of constraints. Then, we propose a recursive backtrack search algorithm, that we call Search-LP, to find the most preferable outcome. We prove that the first feasible outcome returned by Search-LP (without dominance testing) is also preferable to any other feasible outcome. Finally, in our third solution, we preserve the semantics of the CP-net and propose a divide and conquer algorithm that compares outcomes according to dominance testing.
翻译:有条件优惠网(CP- net) 图形化地代表了用户在“ 纯净” 解释下的定性和有条件优惠声明。 受限制的CP- net是CP- net的延伸, 包括一系列限制。 解决受限制的CP- net 的现有算法需要昂贵的支配地位测试操作。 我们提出了应对这一挑战的三种方法。 在第一个解决方案中, 我们通过在变量之间获取额外的相对重要性说明来改变受限制的CP- net 。 我们称之为这个新模型, 受限制的相对重要性网络( 受限制的CP- net ) 。 因此, 我们证明受限制的CP- 网络有一个单一的最佳结果( 假设受限制的CP- net是一致的 ), 我们可以在不进行支配地位测试的情况下获得这个结果。 在第二个解决方案中, 我们把 地谱学参考树( LP- tree) 扩大到一系列制约。 然后, 我们建议一种循环的反轨搜索算算法, 我们叫Sear- LP, 找到最可取的结果 。 我们证明通过搜索- CP 和 最终的 选择的公式测试结果。