The ability to perform computation on devices, such as smartphones, cars, or other nodes present at the Internet of Things leads to constraints regarding bandwidth, storage, and energy, as most of these devices are mobile and operate on batteries. Using their computational power to perform locally machine learning and analytics tasks can enable accurate and real-time predictions at the network edge. A trained machine learning model requires high accuracy towards the prediction outcome, as wrong decisions can lead to negative consequences on the efficient conclusion of applications. Most of the data sensed in these devices are contextual and personal requiring privacy-preserving without their distribution over the network. When working with these privacy-preserving data, not only the protection is important but, also, the model needs the ability to adapt to regular occurring concept drifts and data distribution changes to guarantee a high accuracy of the prediction outcome. We address the importance of personalization and generalization in edge devices to adapt to data distribution updates over continuously evolving environments. The methodology we propose relies on the principles of Federated Learning and Optimal Stopping Theory extended with a personalization component. The privacy-efficient and quality-awareness of personalization and generalization is the overarching aim of this work.


翻译:在智能手机、汽车或互联网上的其他节点等设备上进行计算的能力导致带宽、存储和能源方面的限制,因为大多数这些设备都是移动的和在电池上操作的。利用这些设备的计算能力进行当地机器学习和分析任务,可以在网络边缘进行准确和实时的预测。经过训练的机器学习模型需要高度精确的预测结果,因为错误的决定可能导致对有效完成应用产生负面后果。这些装置中的大多数数据都是根据具体情况和个人需要的隐私保护,而无需在网络上进行分配。在处理这些隐私保护数据时,保护不仅很重要,而且模型需要有能力适应经常发生的概念漂移和数据分配变化,以保证预测结果的高度准确性。我们谈到边缘设备个人化和一般化的重要性,以便适应不断演变的环境的数据分发更新。我们提出的方法依靠个人化部分的联邦学习和最佳停止理论的原则。个人化的隐私效率和质量意识是这项工作的首要目标。

0
下载
关闭预览

相关内容

深度学习搜索,Exploring Deep Learning for Search
专知会员服务
60+阅读 · 2020年5月9日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
5+阅读 · 2018年10月16日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
0+阅读 · 2021年11月17日
Privacy-Preserving News Recommendation Model Learning
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
5+阅读 · 2018年10月16日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员