Fine-grained entity typing (FET) aims to deduce specific semantic types of the entity mentions in text. Modern methods for FET mainly focus on learning what a certain type looks like. And few works directly model the type differences, that is, let models know the extent that one type is different from others. To alleviate this problem, we propose a type-enriched hierarchical contrastive strategy for FET. Our method can directly model the differences between hierarchical types and improve the ability to distinguish multi-grained similar types. On the one hand, we embed type into entity contexts to make type information directly perceptible. On the other hand, we design a constrained contrastive strategy on the hierarchical structure to directly model the type differences, which can simultaneously perceive the distinguishability between types at different granularity. Experimental results on three benchmarks, BBN, OntoNotes, and FIGER show that our method achieves significant performance on FET by effectively modeling type differences.
翻译:精细化实体打字( FET) 旨在推断文本中提及的实体的具体语义类型。 FET 现代方法主要侧重于学习某类信息的特征。 并且很少有人直接模拟类型差异, 也就是说, 让模型知道一种类型与其它类型不同的程度。 为了缓解这一问题, 我们为 FET 提出了一个类型丰富的等级对比战略。 我们的方法可以直接模拟等级类型之间的差异, 并提高区别多类类型类型的能力。 一方面, 我们将类型嵌入实体背景, 使类型信息可以直接识别。 另一方面, 我们对等级结构设计一个限制的对比战略, 直接模拟类型差异, 它可以同时看到不同颗粒性类型之间的区别。 在三个基准上, BBN、 Onto Notes 和 FIGER 的实验结果显示, 我们的方法通过有效模拟类型差异, 在FET 上取得了显著的性能。