Emerging applications of control, estimation, and machine learning, ranging from target tracking to decentralized model fitting, pose resource constraints that limit which of the available sensors, actuators, or data can be simultaneously used across time. Therefore, many researchers have proposed solutions within discrete optimization frameworks where the optimization is performed over finite sets. By exploiting notions of discrete convexity, such as submodularity, the researchers have been able to provide scalable algorithms with provable suboptimality bounds. In this paper, we consider such problems but in adversarial environments, where in every step a number of the chosen elements in the optimization is removed due to failures/attacks. Specifically, we consider for the first time a sequential version of the problem that allows us to observe the failures and adapt, while the attacker also adapts to our response. We call the novel problem Robust Sequential submodular Maximization (RSM). Generally, the problem is computationally hard and no scalable algorithm is known for its solution. However, in this paper we propose Robust and Adaptive Maximization (RAM), the first scalable algorithm. RAM runs in an online fashion, adapting in every step to the history of failures. Also, it guarantees a near-optimal performance, even against any number of failures among the used elements. Particularly, RAM has both provable per-instance a priori bounds and tight and/or optimal a posteriori bounds. Finally, we demonstrate RAM's near-optimality in simulations across various application scenarios, along with its robustness against several failure types, from worst-case to random.


翻译:从目标跟踪到分散模型安装等新兴的控制、估计和机器学习应用,从目标跟踪到分散式模型安装,都造成了资源限制,限制了现有传感器、启动器或数据中哪些可同时使用的时间。 因此, 许多研究人员在离散优化框架内提出了解决方案, 优化以有限组合进行。 通过利用离散共化概念, 如亚模式化, 研究人员能够提供具有可辨别亚最佳度界限的可缩放算法。 在本文中, 我们考虑这些问题, 但是在敌对环境中, 每一步都由于失败/ 攻击而删除了优化中选择的一些元素。 具体地说, 我们第一次考虑的是, 一个顺序化的问题版本, 使我们能够观察失败和调整, 而攻击者也可以适应我们的反应。 我们称之为新颖的按顺序顺序排列的亚模式最大化算法(RSM) 。 总体而言, 问题是计算最硬的, 并且没有为解决问题而已知的缩放算法。 但是, 在本文中, 我们建议通过精确和适应性缩略式的缩略图, 第一次的缩略图, 在以往的缩略图中, 运行一个最终的缩缩略图, 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年11月3日
专知会员服务
44+阅读 · 2020年10月31日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年2月13日
Arxiv
0+阅读 · 2021年2月12日
Arxiv
0+阅读 · 2021年2月11日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年11月3日
专知会员服务
44+阅读 · 2020年10月31日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员