We study the consideration of fairness in redundant assignment for multi-agent task allocation. It has recently been shown that redundant assignment of agents to tasks provides robustness to uncertainty in task performance. However, the question of how to fairly assign these redundant resources across tasks remains unaddressed. In this paper, we present a novel problem formulation for fair redundant task allocation, which we cast as the optimization of worst-case task costs under a cardinality constraint. Solving this problem optimally is NP-hard. Therefore, we exploit properties of supermodularity to propose a polynomial-time, near-optimal solution. In supermodular redundant assignment, the use of additional agents always improves task costs. Therefore, we provide a solution set that is $\alpha$ times larger than the cardinality constraint. This constraint relaxation enables our approach to achieve a super-optimal cost by using a sub-optimal assignment size. We derive the sub-optimality bound on this cardinality relaxation, $\alpha$. Additionally, we demonstrate that our algorithm performs near-optimally without the cardinality relaxation. We show the algorithm in simulations of redundant assignments of robots to goal nodes on transport networks with uncertain travel times. Empirically, our algorithm outperforms benchmarks, scales to large problems, and provides improvements in both fairness and average utility.


翻译:我们研究了对多试剂任务分配的冗余分配的公平性考虑。最近已经表明,为任务分配的代理人的冗余分配为任务执行的不确定性提供了稳健性。然而,如何公平分配这些冗余资源的问题仍未得到解决。在本文件中,我们提出了公平分配冗余任务的新颖问题,这是我们在一个基本限制下优化最坏任务成本的方法。最理想地解决这个问题是NP硬的。因此,我们利用超现代特性的特性提出一个多元时间、接近最佳的解决办法。在超模式的冗余任务中,使用额外代理人总是能提高任务成本。因此,我们提供了一个比基本限制大一倍的解决方案。这种制约使我们的方法能够通过使用一个次级最佳任务规模实现超理想成本。我们用这种最起码的放松($\alphafay)来最佳地解决这个问题。此外,我们证明我们的算法在最接近完美的时候,没有最起码的放松。我们展示了一个比基本任务更大的任务成本的计算方法,在模拟中提供了不固定的、平均运算算式的机算标准,在旅行上提供了不固定的标准。

0
下载
关闭预览

相关内容

近期必读的六篇 NeurIPS 2020【因果推理】相关论文和代码
专知会员服务
71+阅读 · 2020年10月31日
专知会员服务
52+阅读 · 2020年9月7日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
已删除
将门创投
5+阅读 · 2019年4月4日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
SepNE: Bringing Separability to Network Embedding
Arxiv
3+阅读 · 2019年2月26日
Arxiv
3+阅读 · 2018年8月17日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
已删除
将门创投
5+阅读 · 2019年4月4日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Top
微信扫码咨询专知VIP会员