We present a robust visual-inertial SLAM system that combines the benefits of Convolutional Neural Networks (CNNs) and planar constraints. Our system leverages a CNN to predict the depth map and the corresponding uncertainty map for each image. The CNN depth effectively bootstraps the back-end optimization of SLAM and meanwhile the CNN uncertainty adaptively weighs the contribution of each feature point to the back-end optimization. Given the gravity direction from the inertial sensor, we further present a fast plane detection method that detects horizontal planes via one-point RANSAC and vertical planes via two-point RANSAC. Those stably detected planes are in turn used to regularize the back-end optimization of SLAM. We evaluate our system on a public dataset, \ie, EuRoC, and demonstrate improved results over a state-of-the-art SLAM system, \ie, ORB-SLAM3.
翻译:我们展示了强大的视觉-神经网络(CNNs)和平面限制相结合的视觉-自然 SLM系统。我们的系统利用CNN来预测每个图像的深度图和相应的不确定性图。CNN的深度有效地将SLM的后端优化布设了靴子,同时CNN的不确定性适应性地衡量了每个特征点对后端优化的贡献。鉴于惯性传感器的重力方向,我们进一步展示了一种快速飞机探测方法,通过一点RANSAC和两点RANSAC的垂直平面探测横向平面。这些被刺探的平面又被用来规范SLM的后端优化。我们在公共数据集上对我们的系统进行了评估,我们用EuRoC来评估了我们的系统,并展示了在SLM系统(\ie,ORB-SLAM3)上取得更好的结果。