In this paper we study some fragments without implications of the (Hilbert) full Lambek logic $\mathbf{HFL}$ and also some fragments without implications of some of the substructural extensions of that logic. To do this, we perform an algebraic analysis of the Gentzen systems defined by the substructural calculi $\FL_\sigma$. Such systems are extensions of the full Lambek calculus $\FL$ with the rules codified by a subsequence, $\sigma$, of the sequence $e w_l w_r c$; where $e$ stands for \emph{exchange}, $w_l$ for \emph{left weakening}, $w_r$ for \emph{right weakening}, and $c$ for \emph{contraction}. We prove that these Gentzen systems (in languages without implications) are algebraizable by obtaining their equivalent algebraic semantics. All these classes of algebras are varieties of pointed semilatticed monoids and they can be embedded in their ideal completions. As a consequence of these results, we reveal that the fragments of the Gentzen systems associated with the calculi $\FL_\sigma$ are the restrictions of them to the sublanguages considered, and we also reveal that in these languages, the fragments of the external systems associated with $\FL[\sigma]$ are the external systems associated with the restricted Gentzen systems (i.e., those obtained by restriction of $\FL_\sigma]$ to the implication-less languages considered). We show that all these external systems without implication have algebraic semantics but they are not algebraizable (and are not even protoalgebraic). Results concerning fragments without implication of intuitionistic logic without contraction were already reported in Bou et al.(2006): On two fragments with negation and without implication of the logic of residuated lattices. Archive for Mathematical Logic 45(5) and in Adill\'on et al. (2007): On three implication-less fragments of t-norm based fuzzy logics. Fuzzy Sets and Systems 158(23).


翻译:在本文中, 我们研究一些没有( Hilbert) 完整的 兰贝克 直径( 平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
173+阅读 · 2020年5月6日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
【新书】Python编程基础,669页pdf
专知会员服务
197+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
173+阅读 · 2020年5月6日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
【新书】Python编程基础,669页pdf
专知会员服务
197+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Top
微信扫码咨询专知VIP会员