Modern industry requires modern solutions for monitoring the automatic production of goods. Smart monitoring of the functionality of the mechanical parts of technology systems or machines is mandatory for a fully automatic production process. Although Deep Learning has been advancing, allowing for real-time object detection and other tasks, little has been investigated about the effectiveness of specially designed Convolutional Neural Networks for defect detection and industrial object recognition. In the particular study, we employed six publically available industrial-related datasets containing defect materials and industrial tools or engine parts, aiming to develop a specialized model for pattern recognition. Motivated by the recent success of the Virtual Geometry Group (VGG) network, we propose a modified version of it, called Multipath VGG19, which allows for more local and global feature extraction, while the extra features are fused via concatenation. The experiments verified the effectiveness of MVGG19 over the traditional VGG19. Specifically, top classification performance was achieved in five of the six image datasets, while the average classification improvement was 6.95%.


翻译:对技术系统或机器机械部件的功能进行智能监测是完全自动生产过程的必备条件。虽然深入学习一直在推进,可以实时探测物体和其他任务,但对专门设计的革命神经网络在发现缺陷和工业物体识别方面的效力调查甚少。在特别研究中,我们使用了六套公开可用的工业相关数据集,其中包含缺陷材料和工业工具或发动机部件,目的是开发一种专用模式识别模型。我们以虚拟几何组网络最近的成功为动力,提出了一个修改版本,称为多路德VGG19,允许更多本地和全球地物提取,而额外地物则通过凝固结合。实验证实了MVGG19相对于传统的VGG19的有效性。具体地说,六套图像数据集中,有五套实现了最高分类绩效,而平均分类改进率为6.95%。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
专知会员服务
115+阅读 · 2019年12月24日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Deep Face Recognition: A Survey
Arxiv
17+阅读 · 2019年2月12日
VIP会员
相关VIP内容
专知会员服务
115+阅读 · 2019年12月24日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Top
微信扫码咨询专知VIP会员