In this study, we propose an over-the-air computation (AirComp) scheme for federated edge learning (FEEL). The proposed scheme relies on the concept of distributed learning by majority vote (MV) with sign stochastic gradient descend (signSGD). As compared to the state-of-the-art solutions, with the proposed method, edge devices (EDs) transmit the signs of local stochastic gradients by activating one of two orthogonal resources, i.e., orthogonal frequency division multiplexing (OFDM) subcarriers, and the MVs at the edge server (ES) are obtained with non-coherent detectors by exploiting the energy accumulations on the subcarriers. Hence, the proposed scheme eliminates the need for channel state information (CSI) at the EDs and ES. By taking path loss, power control, cell size, and the probabilistic nature of the detected MVs in fading channel into account, we prove the convergence of the distributed learning for a non-convex function. Through simulations, we show that the proposed scheme can provide a high test accuracy in fading channels even when the time-synchronization and the power alignment at the ES are not ideal. We also provide insight into distributed learning for location-dependent data distribution for the MV-based schemes.
翻译:在这次研究中,我们为联合边缘学习提出了一个超空计算(AirComp)办法。拟议办法依靠的是以多数票(MV)以标志性随机梯度降降(SignSGD)进行分布式学习的概念。与最先进的解决方案相比,边缘装置(EDs)通过激活两种或两种不同资源之一的路径丢失、电力控制、细胞大小和所检测到的磁盘在依附性通道中的稳定性性质,证明所分布式学习在非平衡式服务器(ES)的趋同性功能上与非趋同性检测器(MV)取得。因此,拟议办法与最先进的解决方案相比,消除了在EDs和ES进行传输状态信息的需求。考虑到路径丢失、电源控制、细胞大小以及所检测到的磁盘在依附性通道中的概率性,我们通过模拟和同步性探测器获得的分布式学习功能。我们还可以在SEVS-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S