Learning management systems (LMSs) have become essential in higher education and play an important role in helping educational institutions to promote student success. Traditionally, LMSs have been used by postsecondary institutions in administration, reporting, and delivery of educational content. In this paper, we present an additional use of LMS by using its data logs to perform data-analytics and identify academically at-risk students. The data-driven insights would allow educational institutions and educators to develop and implement pedagogical interventions targeting academically at-risk students. We used anonymized data logs created by Brightspace LMS during fall 2019, spring 2020, and fall 2020 semesters at our college. Supervised machine learning algorithms were used to predict the final course performance of students, and several algorithms were found to perform well with accuracy above 90%. SHAP value method was used to assess the relative importance of features used in the predictive models. Unsupervised learning was also used to group students into different clusters based on the similarities in their interaction/involvement with LMS. In both of supervised and unsupervised learning, we identified two most-important features (Number_Of_Assignment_Submissions and Content_Completed). More importantly, our study lays a foundation and provides a framework for developing a real-time data analytics metric that may be incorporated into a LMS.


翻译:在高等教育中,学习管理系统(LMSs)已成为高等教育中必不可少的,在帮助教育机构促进学生成功方面发挥着重要作用。传统上,中学后教育机构在管理、报告和提供教育内容方面使用LMSs。在本文中,我们展示了对LMS的额外使用,方法是利用其数据日志进行数据分析并识别有学术风险的学生。数据驱动的洞察力将使教育机构和教育者能够针对有学术风险的学生制定和实施教学干预措施。我们在大学的2019年秋季、2020年春季和2020年秋季学期使用了由Brightspace LMS创建的匿名数据日志。在受监管和未受监督的学习中,我们使用了超导机器学习算法来预测学生的最后课程成绩,发现一些算法的运行率优于90%以上。SHAP价值方法用来评估预测模型中使用的特征的相对重要性。还使用不严密的学习方法将学生按与LMS系统互动/参与的相似性分组。在受监管和未受监督的学习中和未受监督的学习中,我们找到了两个最关键的软件学习方式,我们找到了一个最关键的内置的内置的内置模型。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月18日
Arxiv
0+阅读 · 2022年6月16日
Arxiv
0+阅读 · 2022年6月15日
VIP会员
相关VIP内容
相关资讯
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员