Many complex time series can be effectively subdivided into distinct regimes that exhibit persistent dynamics. Discovering the switching behavior and the statistical patterns in these regimes is important for understanding the underlying dynamical system. We propose the Recurrent Explicit Duration Switching Dynamical System (RED-SDS), a flexible model that is capable of identifying both state- and time-dependent switching dynamics. State-dependent switching is enabled by a recurrent state-to-switch connection and an explicit duration count variable is used to improve the time-dependent switching behavior. We demonstrate how to perform efficient inference using a hybrid algorithm that approximates the posterior of the continuous states via an inference network and performs exact inference for the discrete switches and counts. The model is trained by maximizing a Monte Carlo lower bound of the marginal log-likelihood that can be computed efficiently as a byproduct of the inference routine. Empirical results on multiple datasets demonstrate that RED-SDS achieves considerable improvement in time series segmentation and competitive forecasting performance against the state of the art.
翻译:许多复杂的时间序列可以有效地细分为具有持久性动态的不同系统。发现这些系统中的转换行为和统计模式对于了解基本动态系统很重要。我们提议采用经常性的透明期限转换动态系统(RED-SDS),这是一个灵活的模型,既能确定状态型和时间型转换动态。依靠国家的转换是由经常性的状态对开关连接促成的,而一个明确的期限计数变量被用来改进时间型转换行为。我们展示了如何使用混合算法进行有效的推断,该算法通过推断网络接近连续状态的后身,并对离散开关和计数进行精确的推算。该模型通过最大限度地增加边际日志相似性的蒙特卡洛的下限来培训,这种边际日志相似性可以作为引力常规的副产品加以有效计算。多数据集的实证结果表明,RED-SDSD在时间序列分割和竞争性预测性业绩方面与艺术状态相比取得了相当大的改进。