The gradient bounds of generalized barycentric coordinates play an essential role in the $H^1$ norm approximation error estimate of generalized barycentric interpolations. Similarly, the $H^k$ norm, $k>1$, estimate needs upper bounds of high-order derivatives, which are not available in the literature. In this paper, we derive such upper bounds for the Wachspress generalized barycentric coordinates on simple convex $d$-dimensional polytopes, $d\ge 1$. The result can be used to prove optimal convergence for Wachspress-based polytopal finite element approximation of, for example, fourth-order elliptic equations. Another contribution of this paper is to compare various shape-regularity conditions for simple convex polytopes, and to clarify their relations using knowledge from convex geometry.
翻译:暂无翻译