Human-in-the-loop approaches are of great importance for robot applications. In the presented study, we implemented a multimodal human-robot interaction (HRI) scenario, in which a simulated robot communicates with its human partner through speech and gestures. The robot announces its intention verbally and selects the appropriate action using pointing gestures. The human partner, in turn, evaluates whether the robot's verbal announcement (intention) matches the action (pointing gesture) chosen by the robot. For cases where the verbal announcement of the robot does not match the corresponding action choice of the robot, we expect error-related potentials (ErrPs) in the human electroencephalogram (EEG). These intrinsic evaluations of robot actions by humans, evident in the EEG, were recorded in real time, continuously segmented online and classified asynchronously. For feature selection, we propose an approach that allows the combinations of forward and backward sliding windows to train a classifier. We achieved an average classification performance of 91% across 9 subjects. As expected, we also observed a relatively high variability between the subjects. In the future, the proposed feature selection approach will be extended to allow for customization of feature selection. To this end, the best combinations of forward and backward sliding windows will be automatically selected to account for inter-subject variability in classification performance. In addition, we plan to use the intrinsic human error evaluation evident in the error case by the ErrP in interactive reinforcement learning to improve multimodal human-robot interaction.
翻译:人类在环形中的方法对于机器人应用非常重要。 在提交的研究报告中,我们实施了多式人-机器人互动(HRI)方案,模拟机器人通过言语和手势与其人类伙伴进行交流。机器人口头宣布其意图,并使用指针手势选择适当的行动。人类伙伴反过来评价机器人的口头宣布(意图)是否与机器人选择的行动(指向姿态)相符。对于机器人口头宣布的机器人口头宣布不符合机器人相应行动选择的情况,我们预期在人体电脑图(EEEEEG)中存在与错误有关的潜力。在EEEG中明显可见的关于人类机器人行动的内在评价是实时记录的,在网上持续分割和分类不连贯地记录了适当的行动。关于特征选择,我们提出了一种方法,允许将前向和后向滑动窗口组合来训练一个叙级器。我们预期在人类电子脑图(EEEEEG)中也观察到与错误有关的可能性相对较高。在EEEEG中显示的人类机器人行动的内在评价,在实时记录中对机器人行动的内在评估中,在选择中,在选择的内向前向式选择模型时,将可扩展选择的模型的方法将扩展到向前向的组合中,将改进为后向前向式选择,在后向后向后向后向后向的变。在选择,将允许采用后向后向后向后向式选择的组合,在选择的组合中,将使得选择,在后向中,在选择,在后向后向中,将改进选择,在后向后向式选择,在后向后向后向中,在后向后向式选择后向中,将改进的计算。在后向中,在后向中,在后向后向中,将改进后向中,将改进选择后向中,在后向后向后向中,在后向中,在后向中,在后向中,将扩大选择选择,在后向中选择,在后向中,在后向后向中将扩大选择选择选择选择选择选择的计算中,在后向后向后向中,在后向后向后向后向后向后向后向后向后向后向后向后向后向中,在选择的计算中,将改进选择,在选择的计算中将