In this paper we introduce CorticalFlow, a new geometric deep-learning model that, given a 3-dimensional image, learns to deform a reference template towards a targeted object. To conserve the template mesh's topological properties, we train our model over a set of diffeomorphic transformations. This new implementation of a flow Ordinary Differential Equation (ODE) framework benefits from a small GPU memory footprint, allowing the generation of surfaces with several hundred thousand vertices. To reduce topological errors introduced by its discrete resolution, we derive numeric conditions which improve the manifoldness of the predicted triangle mesh. To exhibit the utility of CorticalFlow, we demonstrate its performance for the challenging task of brain cortical surface reconstruction. In contrast to current state-of-the-art, CorticalFlow produces superior surfaces while reducing the computation time from nine and a half minutes to one second. More significantly, CorticalFlow enforces the generation of anatomically plausible surfaces; the absence of which has been a major impediment restricting the clinical relevance of such surface reconstruction methods.
翻译:在本文中,我们引入了CorticalFlow, 这是一种新型的几何深学习模型, 以三维图像为背景, 学会将一个参考模板变形为目标对象。 为了保护模板网格的地形特性, 我们用一系列地貌变异来训练我们的模型。 这个流动普通差异框架的新实施得益于一个小的 GPU 内存足迹, 允许生成有数十万个脊椎的表面。 为了减少其离散分辨率带来的表层错误, 我们得出了改善预测三角网格的多重性的数字条件。 为了展示CorticalFlow 的效用, 我们展示了它对于具有挑战性的大脑皮质地表重建任务的表现。 与目前的最新工艺相比, CorticalFlow 生成了优异的表面, 同时将计算时间从9分半到1秒。 更重要的是, CorticalFlow 强制进行解剖直观的表面的生成; 缺乏这一功能是限制这种地表重建方法临床相关性的重大障碍。