Many tasks performed in image-guided, mini-invasive, medical procedures can be cast as pose estimation problems, where an X-ray projection is utilized to reach a target in 3D space. Expanding on recent advances in the differentiable rendering of optically reflective materials, we introduce new methods for pose estimation of radiolucent objects using X-ray projections, and we demonstrate the critical role of optimal view synthesis in performing this task. We first develop an algorithm (DiffDRR) that efficiently computes Digitally Reconstructed Radiographs (DRRs) and leverages automatic differentiation within TensorFlow. Pose estimation is performed by iterative gradient descent using a loss function that quantifies the similarity of the DRR synthesized from a randomly initialized pose and the true fluoroscopic image at the target pose. We propose two novel methods for high-fidelity view synthesis, Neural Tuned Tomography (NeTT) and masked Neural Radiance Fields (mNeRF). Both methods rely on classic Cone-Beam Computerized Tomography (CBCT); NeTT directly optimizes the CBCT densities, while the non-zero values of mNeRF are constrained by a 3D mask of the anatomic region segmented from CBCT. We demonstrate that both NeTT and mNeRF distinctly improve pose estimation within our framework. By defining a successful pose estimate to be a 3D angle error of less than 3 deg, we find that NeTT and mNeRF can achieve similar results, both with overall success rates more than 93%. However, the computational cost of NeTT is significantly lower than mNeRF in both training and pose estimation. Furthermore, we show that a NeTT trained for a single subject can generalize to synthesize high-fidelity DRRs and ensure robust pose estimations for all other subjects. Therefore, we suggest that NeTT is an attractive option for robust pose estimation using fluoroscopic projections.
翻译:暂无翻译