Learned indices have been proposed to replace classic index structures like B-Tree with machine learning (ML) models. They require to replace both the indices and query processing algorithms currently deployed by the databases, and such a radical departure is likely to encounter challenges and obstacles. In contrast, we propose a fundamentally different way of using ML techniques to improve on the query performance of the classic R-Tree without the need of changing its structure or query processing algorithms. Specifically, we develop reinforcement learning (RL) based models to decide how to choose a subtree for insertion and how to split a node when building an R-Tree, instead of relying on hand-crafted heuristic rules currently used by R-Tree and its variants. Experiments on real and synthetic datasets with up to more than 100 million spatial objects clearly show that our RL based index outperforms R-Tree and its variants in terms of query processing time.


翻译:为了用机器学习(ML)模型取代典型的指数结构,例如B-Tree,提出了以机械学习(ML)模型取代B-Tree等典型的指数指数。它们需要替换目前由数据库使用的指数和查询处理算法,而这种彻底的偏离可能会遇到挑战和障碍。相反,我们提出了一种根本不同的方法,用ML技术改进经典R-Tree的查询性能,而不必改变其结构或查询处理算法。具体地说,我们开发了基于强化学习(RL)的模型,以决定如何选择用于插入的子树,以及如何在建造R-Tree时分割节点,而不是依赖R-Tree及其变体目前使用的手工制作的超光速规则。用多达1亿个空间天体组成的真实和合成数据的实验清楚地表明,我们基于RL的索引比R-Tree及其变体在查询处理时间上的变体更形。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Arxiv
6+阅读 · 2018年12月10日
Image Captioning based on Deep Reinforcement Learning
Arxiv
11+阅读 · 2018年7月31日
Arxiv
5+阅读 · 2018年1月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员