Real-time object detection on Unmanned Aerial Vehicles (UAVs) is a challenging issue due to the limited computing resources of edge GPU devices as Internet of Things (IoT) nodes. To solve this problem, in this paper, we propose a novel lightweight deep learning architectures named FasterX based on YOLOX model for real-time object detection on edge GPU. First, we design an effective and lightweight PixSF head to replace the original head of YOLOX to better detect small objects, which can be further embedded in the depthwise separable convolution (DS Conv) to achieve a lighter head. Then, a slimmer structure in the Neck layer termed as SlimFPN is developed to reduce parameters of the network, which is a trade-off between accuracy and speed. Furthermore, we embed attention module in the Head layer to improve the feature extraction effect of the prediction head. Meanwhile, we also improve the label assignment strategy and loss function to alleviate category imbalance and box optimization problems of the UAV dataset. Finally, auxiliary heads are presented for online distillation to improve the ability of position embedding and feature extraction in PixSF head. The performance of our lightweight models are validated experimentally on the NVIDIA Jetson NX and Jetson Nano GPU embedded platforms.Extensive experiments show that FasterX models achieve better trade-off between accuracy and latency on VisDrone2021 dataset compared to state-of-the-art models.


翻译:在无人驾驶飞行器(UAVs)上实时物体探测是一个具有挑战性的问题,因为边缘 GPU 设备作为Things(IoT) 互联网节点的计算资源有限。 为了解决这个问题,我们在本文件中提出一个基于 YOLOX 模型的新型轻量深学习结构,名为PeappleX, 用于在边缘GPU进行实时物体探测。 首先,我们设计一个有效和轻量的PixSF头取代YOLOX的原始头部,以更好地探测小物体,这些小物体可以进一步嵌入深度的分解(DS Conv)中,以达到一个较轻的首级。然后,在Neck层中开发一个称为SlimFPN的较细结构,以降低网络参数,这是精确和速度之间的权衡。此外,我们将关注模块嵌入到头层,以改进预测头部的特征提取效果。 同时,我们还改进标签分配战略和损失功能,以缓解UAVAVSD公司数据集的分类不平衡和框优化问题。 最后,将辅助头部用于在线蒸馏,以提高定位模型的内置能力,以便在SISISBSBSBSBSB 和SBSBSBSB的精度测试和SB的精度模型上,在SBSBSBSBSBSBSBSB的精度的精度上,从而的精度测试。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月19日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员