The key to shadow removal is recovering the contents of the shadow regions with the guidance of the non-shadow regions. Due to the inadequate long-range modeling, the CNN-based approaches cannot thoroughly investigate the information from the non-shadow regions. To solve this problem, we propose a novel cleanness-navigated-shadow network (CNSNet), with a shadow-oriented adaptive normalization (SOAN) module and a shadow-aware aggregation with transformer (SAAT) module based on the shadow mask. Under the guidance of the shadow mask, the SOAN module formulates the statistics from the non-shadow region and adaptively applies them to the shadow region for region-wise restoration. The SAAT module utilizes the shadow mask to precisely guide the restoration of each shadowed pixel by considering the highly relevant pixels from the shadow-free regions for global pixel-wise restoration. Extensive experiments on three benchmark datasets (ISTD, ISTD+, and SRD) show that our method achieves superior de-shadowing performance.
翻译:清除阴影的关键是在非阴影区域的指导下恢复阴影区域的内容。由于长程模型不足,有线电视新闻网采用的方法无法彻底调查非阴影区域的信息。为了解决这个问题,我们提议建立一个全新的清洁-导航-阴影网络(CNSNet),其模块是面向阴影的适应性正常化(SOAN)模块,并有一个基于阴影遮罩的变压器(SAAT)模块。在阴影遮罩的指导下,SOAN模块从非阴影区域编制统计数据,并适应性地将其应用到阴影区域,以便进行区域复原。SAAT模块利用阴影遮罩来精确指导每个阴影像素的恢复,方法是考虑从无阴影区域恢复全球像素的高度相关的像素。在三个基准数据集(ISTD、ISTD+和SRD)上进行的广泛实验显示,我们的方法取得了更高的脱阴影性工作。