A \emph{geometric graph} is a graph whose vertex set is a set of points in general position in the plane, and its edges are straight line segments joining these points. We show that for every integer $k \ge 2$, there exists a constat $c>0$ such that the following holds. The edges of every dense geometric graph can be colored with $k$ colors, such that the number of pairs of edges of the same color that cross is at most $(1/k-c)$ times the total number of pairs of edges that cross. The case when $k=2$ and $G$ is a complete geometric graph, was proved by Aichholzer et al.[\emph{GD} 2019].
翻译:\ emph{ 几何图} 是一个图表, 其顶点设置是平面一般位置的一组点, 其边缘是连接这些点的直线段。 我们显示, 对于每整数$\ ge 2 $, 都存在一个等同的正数 $c> 0 美元。 每个稠密的几何图的边缘可以用 $k 的颜色来颜色显示, 相交的同一颜色的边缘数最多是 $( 1- k- c) 美元, 其边缘是交叉的两对边缘的总数。 当 $k= 2 美元 和 $ G 美元是完整的几何图时, Aichholzer 等人证明了这一点。 [\ emph{ GDD} 2019 。