We present Visuelle 2.0, the first dataset useful for facing diverse prediction problems that a fast-fashion company has to manage routinely. Furthermore, we demonstrate how the use of computer vision is substantial in this scenario. Visuelle 2.0 contains data for 6 seasons / 5355 clothing products of Nuna Lie, a famous Italian company with hundreds of shops located in different areas within the country. In particular, we focus on a specific prediction problem, namely short-observation new product sale forecasting (SO-fore). SO-fore assumes that the season has started and a set of new products is on the shelves of the different stores. The goal is to forecast the sales for a particular horizon, given a short, available past (few weeks), since no earlier statistics are available. To be successful, SO-fore approaches should capture this short past and exploit other modalities or exogenous data. To these aims, Visuelle 2.0 is equipped with disaggregated data at the item-shop level and multi-modal information for each clothing item, allowing computer vision approaches to come into play. The main message that we deliver is that the use of image data with deep networks boosts performances obtained when using the time series in long-term forecasting scenarios, ameliorating the WAPE and MAE by up to 5.48% and 7% respectively compared to competitive baseline methods. The dataset is available at https://humaticslab.github.io/forecasting/visuelle
翻译:我们介绍Visuelle 2.0,这是第一个用来应对快速时装公司必须例行管理的多种预测问题的数据集。此外,我们演示了计算机视觉的使用在这种假设情景中如何具有实质性意义。Visuelle 2.0 包含Nuna Lie 的6个季节/5355服装产品的数据,Nuna Lie是一家著名的意大利公司,拥有国内不同地区数百家商店。特别是,我们侧重于一个具体的预测问题,即短期观察新产品销售预测(SO-fore-hue)。SO的前假设季节已经开始,不同商店的书架上有一套新产品。我们提供的主要信息是预测特定地平线的销售量,因为过去(few 几周)是短时间的,没有更早的统计数据。要取得成功,SO-forest方法应该捕捉到这一短暂的过去,利用其他模式或外源数据。为这些目标,Visuelle 2.0在项目商店一级配备了分类数据和多式信息,允许计算机视觉方法发挥作用。我们提供的主要信息是,在7个系列中使用与深度网络比较的图像数据,在使用长期预测时,将数据提升到长期的预测。