We consider first-order logic over the subword ordering on finite words, where each word is available as a constant. Our first result is that the $\Sigma_1$ theory is undecidable (already over two letters). We investigate the decidability border by considering fragments where all but a certain number of variables are alternation bounded, meaning that the variable must always be quantified over languages with a bounded number of letter alternations. We prove that when at most two variables are not alternation bounded, the $\Sigma_1$ fragment is decidable, and that it becomes undecidable when three variables are not alternation bounded. Regarding higher quantifier alternation depths, we prove that the $\Sigma_2$ fragment is undecidable already for one variable without alternation bound and that when all variables are alternation bounded, the entire first-order theory is decidable.


翻译:我们考虑下定限定字词的第一阶逻辑, 每个单词都有一个常数。 我们的第一个结果是, $\Sigma_ 1$的理论是不可变的( 已经由两个字母决定 ) 。 我们通过考虑除一定数量变量外所有变量都是交替约束的碎片来调查可变边界, 这意味着变量必须总是用语言量化, 并有一定数量的字母交替。 我们证明, 当大多数两个变量没有交替约束时, $\Sigma_ 1$的碎片是可以变换的, 当三个变量没有交替约束时, 它变得无法变换。 关于更高的量化参数交替深度, 我们证明, $\Sigma_ 2$的碎片已经无法计算一个变量, 而没有交替约束, 当所有变量被交替约束时, 整个第一级理论是可变的。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【电子书推荐】Data Science with Python and Dask
专知会员服务
43+阅读 · 2019年6月1日
【2019-26期】This Week in Extracellular Vesicles
外泌体之家
11+阅读 · 2019年6月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月16日
Arxiv
0+阅读 · 2021年11月15日
Arxiv
0+阅读 · 2021年11月15日
Arxiv
0+阅读 · 2021年11月15日
Arxiv
0+阅读 · 2021年11月4日
VIP会员
相关主题
相关资讯
【2019-26期】This Week in Extracellular Vesicles
外泌体之家
11+阅读 · 2019年6月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员