We consider first-order logic over the subword ordering on finite words, where each word is available as a constant. Our first result is that the $\Sigma_1$ theory is undecidable (already over two letters). We investigate the decidability border by considering fragments where all but a certain number of variables are alternation bounded, meaning that the variable must always be quantified over languages with a bounded number of letter alternations. We prove that when at most two variables are not alternation bounded, the $\Sigma_1$ fragment is decidable, and that it becomes undecidable when three variables are not alternation bounded. Regarding higher quantifier alternation depths, we prove that the $\Sigma_2$ fragment is undecidable already for one variable without alternation bound and that when all variables are alternation bounded, the entire first-order theory is decidable.
翻译:我们考虑下定限定字词的第一阶逻辑, 每个单词都有一个常数。 我们的第一个结果是, $\Sigma_ 1$的理论是不可变的( 已经由两个字母决定 ) 。 我们通过考虑除一定数量变量外所有变量都是交替约束的碎片来调查可变边界, 这意味着变量必须总是用语言量化, 并有一定数量的字母交替。 我们证明, 当大多数两个变量没有交替约束时, $\Sigma_ 1$的碎片是可以变换的, 当三个变量没有交替约束时, 它变得无法变换。 关于更高的量化参数交替深度, 我们证明, $\Sigma_ 2$的碎片已经无法计算一个变量, 而没有交替约束, 当所有变量被交替约束时, 整个第一级理论是可变的。