We study a variant of the multi-armed bandit problem where side information in the form of bounds on the mean of each arm is provided. We develop the novel non-optimistic Global Under-Explore (GLUE) algorithm which uses the provided mean bounds (across all the arms) to infer pseudo-variances for each arm, which in turn decide the rate of exploration for the arms. We analyze the regret of GLUE and prove regret upper bounds that are never worse than that of the standard UCB algorithm. Furthermore, we show that GLUE improves upon regret guarantees that exists in literature for structured bandit problems (both theoretically and empirically). Finally, we study the practical setting of learning adaptive interventions using prior data that has been confounded by unrecorded variables that affect rewards. We show that mean bounds can be inferred naturally from such logs and can thus be used to improve the learning process. We validate our findings through semi-synthetic experiments on data derived from real data sets.


翻译:我们研究多臂土匪问题的变式,即以每个手臂的平均值的界限的形式提供侧面信息。我们开发了新型的非乐观性全球低爆(GLUE)算法,该算法使用提供的平均界限(横跨所有武器)来推断每个手臂的假变量,这反过来又决定了武器勘探的速度。我们分析了GLUE的遗憾,并证明对上边界限的遗憾并不比标准的UCB算法的糟糕。此外,我们表明GLUE改进了文献中存在的结构性土匪问题(理论上和经验上两方面)的遗憾保证。最后,我们利用以前的数据研究适应性干预的实际环境,这些数据由未记录的、影响奖励的变数所混合起来。我们表明,从这些日志中可以自然地推断出平均值,从而可以用来改进学习过程。我们通过对来自真实数据集的数据进行半合成试验来验证我们的调查结果。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年8月5日
Arxiv
0+阅读 · 2021年8月4日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
5+阅读 · 2018年6月12日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员