Gaussian graphical models can capture complex dependency structures amongst variables. For such models, Bayesian inference is attractive as it provides principled ways to incorporate prior information and to quantify uncertainty through the posterior distribution. However, posterior computation under the conjugate G-Wishart prior distribution on the precision matrix is expensive for general non-decomposable graphs. We therefore propose a new Markov chain Monte Carlo (MCMC) method named the G-Wishart weighted proposal algorithm (WWA). WWA's distinctive features include delayed acceptance MCMC, Gibbs updates for the precision matrix and an informed proposal distribution on the graph space that enables embarrassingly parallel computations. Compared to existing approaches, WWA reduces the frequency of the relatively expensive sampling from the G-Wishart distribution. This results in faster MCMC convergence, improved MCMC mixing and reduced computation time. Numerical studies on simulated and real data show that WWA provides a more efficient tool for posterior inference than competing state-of-the-art MCMC algorithms.
翻译:Gausian 图形模型可以捕捉不同变量之间复杂的依赖结构。 对于这些模型,Bayesian 的推论具有吸引力,因为它提供了包含先前信息并通过后方分布量化不确定性的原则性方法。然而,在精确矩阵上的G-Wishart先前的配置比照G-Wishart先前的配置,后方计算对于一般非可分解的图形来说成本很高。因此,我们提出了一个名为G-Wishart加权提案算法(WWWAA)的新的Markov连锁 Monte Carlo(MC MC ) 方法。WWWA的独特特征包括延迟接受 MC MC, Gibs 精确矩阵的更新以及图形空间的知情建议分布,从而使得能够进行令人尴尬的平行计算。与现有的方法相比,WWWA降低了G-Wishart分布相对昂贵的取样频率。这导致MCMMC的趋同速度更快,改进了MCMC的混合和缩短了计算时间。关于模拟和真实数据的数值研究表明WWA为后方推推论提供了比相相较相近的州- MCMCMCMC算法更有效工具。