We consider the interpretation and the numerical construction of the inverse branches of $n$ factor Blaschke-products on the disk and show that these provide a generalization of the $n$-th root function. The inverse branches can be defined on pairwise disjoint regions, whose union provides the disk. An explicit formula can be given for the $n$ factor Blaschke-products on the torus, which can be used to provide the inverses on the torus. The inverse branches can be thought of as the solutions $z=z_t(r) (0\le r\le 1)$ to the equation $B(z )=re^{it}$, where $B$ denotes an $n$ factor Blaschke-product. We show that starting from a known value $z_t(1)$, any $z_t(r)$ point of the solution trajectory can be reached in finite steps. The appropriate grouping of the trajectories leads to two natural interpretations of the inverse branches (see Figure 2). We introduce an algorithm which can be used to find the points of the trajectories.
翻译:我们考虑对磁盘上的反因数 Blaschke 产品进行解释和数字构造, 并显示这些反因数提供了对美元第根函数的概括化。 反因数可以在对称断开的区域上定义, 后者的结合提供了磁盘。 对冲线上的反因数 Blaschke 产品可以给出明确的公式, 用于提供对冲线上的反因数。 反因数的反因数可被视为对正方程式 $z=z_ t(r) (0\le r\le r\le 1) 的解决方案 $B(z) =re ⁇ it} $( $B) =re{it} $( $B) 表示对正反因数 。 我们显示, 从已知值$z_ t(1) 开始, 任何溶轨迹的 $z_ t(r) 点都可以在有限的步骤中达到 。 轨迹的适当组合可以导致对反系的两种自然解释( 见图 2)。 我们采用了一种算法, 可以用来找到反因数点 。